

Particle Size Analysis Component Annual Report Scheme Operation 2021/2022 (Year 28)

 Authors:
 Søren Pears & Lydia McIntyre-Brown (APEM) NMBAQCS Particle Size Analysis Administrators Prof. Kenneth Pye (KPAL), NMBAQCS Particle Size Benchmark Analyst

 Reviewer:
 David Hall (APEM), NMBAQCS Project Manager

 Approved by:
 Claire Mason (Cefas), Contract Manager

 Contact:
 nmbaqc@apemltd.co.uk

 Date of Issue:
 September 2022

PARTICLE SIZE COMPONENT ANNUAL REPORT FROM APEM Ltd

SCHEME OPERATION – 2021/22 (Year 28)

1.	Introdu	ction	1
	1.1	Assessing Performance	2
	1.2	Statement of Performance	2
2.		Summary of PSA Component	3
	2.1	Introduction	3
	2.2	Logistics	3
	2.3	Data returns	3
	2.4	Confidentiality	3
3.		Particle Size Analysis (PS) Module	3
		Description Preparation of the Samples Analysis required	3 4 5
	3.2.2 3.2.3 3.2.4	Results General comments Analysis of sample replicates (Benchmark Data) Results from participating laboratories Discussion Application of NMBAQC Scheme Standards and Laboratory Performance	5 5 6 8 16 20
4.		Particle Size Own Sample Analysis (PS-OS) module	21
	4.1 4.1.1	Description Analysis required	21 21
	4.2 4.2.1	Results General comments	22 22
	4.3	Discussion	31
5.		Conclusions and Recommendations	32
6.		References	35

Linked Documents (hyperlinked in this report):

- Particle Size Exercise Results <u>PS80</u>
- Particle Size Exercise Results PS81
- Particle Size Exercise Results PS82
- Particle Size Exercise Results PS83

List of Tables and Figures:

Figure 1.	Particle size distribution curves for sediment distributed as PS80 (Figure 6 in PS80).
Figure 2.	Stacked column chart showing the percentage gravel, sand, silt and clay for sediment distributed as PS80 (Figure 7 in PS80).
Figure 3.	Particle size distribution curves for sediment distributed as PS81 (Figure 6 in PS81).
Figure 4.	Stacked column chart showing the percentage gravel, sand, silt and clay for sediment distributed as PS81 (Figure 7 in PS81).
Figure 5.	Particle size distribution curves for sediment distributed as PS82 (Figure 6 in PS82).
Figure 6.	Stacked column chart showing the percentage gravel, sand, silt and clay for sediment distributed as PS82 (Figure 7 in PS82).
Figure 7.	Particle size distribution curves for sediment distributed as PS83 (Figure 7in PS83).
Figure 8.	Stacked column chart showing the percentage gravel, sand, silt and clay for sediment distributed as PS83 (Figure 7 in PS83).
Figure 9.	Bar charts showing raw sieve data as percentages in each half-phi interval for PS81 and PS83.
Figure 10.	Cumulative and differential final laser data provided by participants for exercises PS80, PS81, PS82 and PS83.
Figure 11.	Bar charts showing percentage gravel, sand, silt and clay in the PS-OS module from laboratories PSA_2801, PSA_2803, PSA_2806, PSA_2807, PSA_2808 and PSA_2816.
Figure 12.	Bar charts showing percentage gravel, sand, silt and clay in the PS-OS module from laboratories PSA_2817, PSA_2818, PSA_2819, PSA_2820, PSA_2821 and PSA_2822.
Figure 13.	gravel, sand, silt and clay in the PS-OS module from laboratories PSA_2823, PSA_2824, PSA_2825, PSA_2826, PSA_2827 and PSA_2828.
Table 1.	Gradistat sediment descriptions from the primary data and the AQC re-analysis. Taken from Table 6 of the individual PS-OS reports.
Table 2.	Percentage Gravel, Sand, Silt and Clay recorded in PS-OS 22, 23 and 24 for participant PSA_2803 and the AQC lab.

1. Introduction

The NE Atlantic Marine Biological Analytical Quality Control (NMBAQC) scheme is a quality assurance scheme developed on behalf of the UK competent monitoring authorities (CMAs). Its principal aim is to provide assessment of marine biological data contributing to UK national or European monitoring programmes.

The scheme also aims to develop and promote best practice in relation to sampling and analysis procedures through a range of training exercises, workshops, and literature guides.

The scheme includes seven biological components, each with its own set of training exercises and/or assessment modules.

APEM Ltd has been the administrative contractor for the Particle Size component since 2014 (Scheme year 21).

The Particle Size (PS) component of the scheme comprises two modules:

- The PS Ring Test (PS)
- The PS Own Sample (PS-OS)

The PS module followed the same format as 2020/21; a series of exercises involved the distribution of test materials to participating laboratories and the centralised examination of returned data and samples.

The PS-OS module, introduced in the 2014/15 Scheme year, followed the same logistical format as the previous year. Selected participant samples are re-analysed by the NMBAQC Scheme PSA contractor, and the results are compared. The Particle Size Own Sample module is a training/audit module, and the purpose of this module is to examine the accuracy of particle size analysis for participants' in-house samples.

Eighteen laboratories signed up to participate in the 2021/22 PS module exercises (PS80, PS81, PS82 and PS83); seven were government laboratories and eleven were private consultancies. Twelve laboratories signed up to participate in the PS-OS module exercises (PS-OS22, PS-OS23 and PS-OS24); six were government laboratories and six were private consultancies. One government laboratory had eleven Lab Codes to submit 33 PS-OS samples for AQC analysis.

To reduce potential errors and simplify administration, Lab Codes were assigned with a prefix to determine the Scheme component; all codes for the Particle Size component were prefixed with "PSA_".

As in previous years, some laboratories elected to be involved in limited aspects of the Scheme. Competent monitoring authorities (CMAs) completing PSA in support of biological analysis for monitoring programmes (including in assessment of MPA (Marine Protected Areas), as evidence under MSFD (Marine strategy framework directive) and WFD (Water Framework Directive), as well as the CSEMP (Clean Seas Environmental Monitoring programme), must participate in this component of the Scheme. The Scheme is aware of other PSA methodologies (*e.g.* those used in the Regional Seabed Monitoring Plan) and encourages those involved in any relevant PSA monitoring programmes to participate in this Scheme, especially where pass/fail criteria can be used to assess overlapping aspects of different methodologies.

1.1 Assessing Performance

For 2021/22 (Scheme Year 28) both the PS and PS-OS reports followed a similar format, with each sample analysis section broken down for review, including sieve processing, laser processing and final data. Laboratories received a "Good" or "Review" flag based on their results; "Review" flags had accompanying comments as to where errors have been made and how to correct them. Review flags could be upgraded to « GOOD – following remedial action » provided the participant supplied evidence of completing required actions or re-submitted results within a month of the issue of the interim report.

1.2 Statement of Performance

Each participating laboratory received a copy of the interim results for each exercise; these included a summary of results provided by each laboratory and a basic discussion of any major outliers. Once any remedial actions, re-submissions and minor data changes were completed by participants a final version of each report was made available on the <u>Scheme website</u>. Further details and analysis can be found in this report.

At the end of the Scheme year each laboratory received a 'Statement of Performance' document (SoP), which included a summary of results for each of the Scheme's modules and details the resulting flags where appropriate. These statements were first circulated with the 1998/1999 annual report for the purpose of providing proof of Scheme participation and for ease of comparing year on year progress.

2. Summary of PSA Component

2.1 Introduction

The two 2021/22 year PSA modules, PS and PS-OS are described in more detail below. A brief outline of the information obtained from the module is given, together with a description of the preparation of the necessary materials and brief details of the processing instructions given to each of the participating laboratories.

2.2 Logistics

The labelling and distribution procedures employed previously have been maintained and specific details can be found in the Scheme's annual reports for <u>1994/95</u> and <u>1995/96</u> (Unicomarine, 1995 & 1996). Email was the primary means of communication for all participating laboratories. This has considerably reduced the amount of paper required for the administration of the Scheme.

2.3 Data returns

Spreadsheet based workbooks for each circulation were distributed to participating laboratories via email and data returned to APEM Ltd via the <u>NMBAQC Scheme email address</u>. In this and previous Scheme years slow or missing returns for exercises lead to delays in processing the data and resulted in difficulties with reporting and rapid feedback of results to laboratories. Reminders were distributed shortly before each exercise deadline.

2.4 Confidentiality

To preserve the confidentiality of participating laboratories, each was identified by a four-digit Laboratory Code prefixed with "PSA_", to identify the scheme component. In September 2021 each participant was given a confidential, randomly assigned 2021/22 (Scheme year twenty-eight) Lab Code. Codes are prefixed with the Scheme year to reduce the possibility of obsolete codes being used inadvertently by laboratories, *e.g.* Laboratory number twelve in Scheme year twenty-eight (2021/22) was recorded as PSA_2812.

3. Particle Size Analysis (PS) Module

3.1 Description

This component examined the percentage of sediment found in each half-phi interval from the particle size analysis of replicate sediment samples. Four samples of sediment, two fine (PS80 and PS82) and two mixed (PS81 and PS83) were distributed in 2021/22. The samples were distributed in two stages; the first circulation (PS80 and PS81) was sent to participants on 8th October 2021 and the second circulation (PS82 and PS83) was sent on the 19th November 2021. For each circulation participants were given approximately 6 weeks to complete their analysis and send completed workbooks via email to APEM Ltd. PS80 was derived from natural marine sediments; PS81, PS82 and PS83 replicates were prepared from a combination of natural sediments and artificially prepared commercial sand and aggregates; they were prepared at APEM's Letchworth laboratory as described below.

3.1.1 Asbestos testing

Following participant concerns raised during Scheme Year 25 (2018/2019) about the possible presence of asbestos in natural sediments used to create the PS exercises, all the natural sediments are now sent for asbestos testing prior to the creation of the samples. Sediments are only used when they have tested negative for asbestos; any that test positive are disposed of either in a landfill that has a specific permit authorising it to accept asbestos or in a non-hazardous waste landfill, provided it is self-contained.

3.1.2 Preparation of the Samples

The first PS circulation, PS80, was a mud collected from natural marine environments near Thorney Island, Chichester Harbour in East Sussex. Approximately 10 litres of visually similar sediment were collected and returned to the laboratory where it was wet sieved at 0.5mm to remove any particles larger than 0.5mm. Sediment that passed through the 0.5mm sieve was retained in a large tray, mixed and left to settle; excess water was removed before it was cored into replicate samples of approximately 200 grams in weight. The second exercise, PS81, was a mixed sample, known amounts of commercially acquired tropical reef aquarium gravel (split into half-phi intervals by dry sieving using a mechanical sieve shaker) was mixed with acquired play sand pre-sieved through a 1mm sieve and Thorney Island mud.

The third exercise, PS82, was created from known amounts of commercially acquired play sand pre-sieved through a 1mm sieve to remove any larger particles that may have been present and pre-sieved mud (<0.5mm) mud from The Swale, Yorkshire. The final exercise (PS83) was a created from known amounts of commercially acquired aggregate (split into half-phi intervals by dry sieving using a mechanical sieve shaker), mixed with sand (<1.0mm) from the northern North Sea.

Five replicate samples from each of these exercises were sent to Kenneth Pye Associates Ltd (KPAL) for particle size analysis to assess the degree of inter-sample variation and to produce benchmark data. Where laser diffraction analysis was required, these replicates were analysed

using a Beckman Coulter LS13320 laser diffraction instrument. The remaining replicates were randomly assigned to participating laboratories and distributed according to the Scheme timetable. Spare replicates were kept at the APEM Ltd. Letchworth laboratory in case of problems such as damaged samples during delivery or significant processing errors.

3.1.3 Analysis required

The participating laboratories were required to conduct particle size analysis on the samples following the NMBAQC Scheme's best practice guidance for particle size analysis to support biological data (<u>NMBAQC Best Practice Guidelines (Mason, 2022</u>)), either in-house or using a subcontractor. A summary of the sample as a written description of the sediment characteristics was to be recorded, with a qualitative visual assessment made prior to processing, using the Folk (1954) textural classification. In addition, the percentages of gravel, sand and silt/clay and any use of peroxide treatment or chemical dispersant were to be noted. Also requested was a breakdown of the particle size distribution, expressed as a weight or volume percentage at half-phi (ϕ) intervals, for each of the raw sieve data (>1mm), the raw laser data (<1mm) and the final merged dataset.

The 2021/22 workbooks used an updated format to help enable the continuity of data through the workbook. All sieve and laser data are now entered into a single worksheet, with conditional formatting to flag up red cells to indicate possible data entry errors. Data provided in the "Laser Metadata" spreadsheet tab were for analytical purposes only and were not published in the Interim Results reports. Benchmark metadata were included in each sample report for participants to see how the Benchmark Lab analysed each sample.

Approximately eight weeks were allowed for the analysis of the first pair of PS samples sent out (PS80 & PS81) and approximately eight weeks for the second pair (PS82 & PS83), although this did include the Christmas break.

3.2 Results

3.2.1 General comments

Eighteen laboratories subscribed to the exercises in 2021/22. For the first circulation (PS80 and PS81) fourteen subscribing participants provided results; PSA_2804 communicated that they would not be able to meet the December deadline but may submit data for inclusion in the final report but ultimately did not do so; PSA_2805 communicated that they were not participating due to a shortage of suitably trained staff and restricted access to laboratories due to Covid-19 restrictions; PSA_2810 requested an extension as they were unable to meet

the original deadline due to staff shortages, but ultimately did not submit any data. PSA_2835 did not register until the beginning of December 2021 and therefore did not submit any data for exercises PS80 and PS81. For the second circulation (PS81 and PS82) sixteen participants provided results. PSA_2805 and PSA_2810 did not submit data and did not provide any further communication indicating non-participation.

Most participating laboratories now provide data in the requested format, although some variations remain. As reported previously, it should be remembered that the results presented may be from a more limited number of analytical laboratories than is immediately apparent since this component of the Scheme is often sub-contracted by participants to one of a limited number of specialist laboratories. Detailed results for each exercise (PS80, PS81, PS82 and PS83) have been reported to the participating laboratories; additional comments are provided below.

3.2.2 Analysis of sample replicates (Benchmark Data)

Five replicate samples of the sediment used for the four PS distributions were analysed by KPAL to examine variability and establish benchmark data that participant results can be compared with. Replicate samples supplied by APEM were analysed, where required, using Endecotts British Standard 300mm and 200mm test sieves, Endecotts EFL 2000/2 and Retsch AS2001 Control 'g' sieve shakers and a Beckman Coulter LS13320 laser size analyser. In previous Scheme years replicates were analysed by both laser diffraction and sieve/pipette methods; however, as the majority of laboratories are now conducting analyses by laser diffraction the testing of replicates for 2021/22 was undertaken only using a laser diffraction instrument.

The analysis results for the benchmark replicates were assessed by APEM to analyse the variability between the replicates and to establish the reproducibility of the samples. The analysis showed an overview of the sample including percentage Gravel, Sand and Mud along with a description of the sediment using the textural group from a Gradistat (Blott & Pye, 2001) output of the final data, e.g. Slightly Gravelly Muddy Sand. The processing of the sample was split into sieve and laser analysis.

Sieve analysis is displayed in a table with the raw weight recorded in each half phi interval from -6.5 to 0.0phi and the weight of the less than 1mm oven dried sample plus any sediment from the base pan of the sieve shaker. The percentage weight in each half-phi category is also displayed graphically in a bar chart for visual comparison.

Laser analysis included a table of the final laser data for each replicate with Gradistat outputs along with a graph showing the differential and cumulative percentage. The triplicate analysis undertaken to obtain the final laser data was presented in a table in Appendix 1. For each replicate sample the Coefficient of Variation (CV) was calculated for the D₁₀, D₅₀ and D₉₀ particle size in microns. The CV is most commonly expressed as the standard deviation as a percentage of the mean and describes the dispersion of a variable in a way that does not depend on the variables' measurement units. A low CV indicates a smaller amount of dispersion in the variable. BS ISO 13320 states that good laser reproducibility is shown for replicates when the %CV is <3% for the D₅₀ and <5% for the D₁₀ and D₉₀, all limits are doubled when the D₅₀ was less than 10 μ m. In reality 3% and 5% are low and greater variability is expected in natural sediment samples therefore a maximum of 20% will be used as guidance.

Benchmark analysis of the replicates for Sample PS80 indicated an average composition of 55.05% sand and 44.95% mud, classified as 'Muddy Sand' according to the Blott & Pye (2012) scheme. Analysis of the triplicate laser analysis for each replicate sample showed that the %CVs for the D_{10} , D_{50} and D_{90} were well within the acceptable limits and therefore the replicates were deemed to have good reproducibility. Results for the individual replicates are provided in Tables 1, 2, 3, 4 and 5, and are displayed in Figures 1, 2 and 3 in the <u>PS80 Report</u>.

Sample PS81 was a mixed sediment and contained an average of 17.58% gravel, 64.97% sand and 17.45% mud, classified as a 'Gravelly Muddy Sand' according to the Blott & Pye (2012) scheme. The replicates were analysed by dry sieving and laser analysis. The sieve data shows consistent results between the replicates and triplicate laser analysis showed extremely low variation, with %CV well below acceptable levels for each statistic. Results for the individual replicates are provided in Tables 1, 2, 3, 4 and 5, and are displayed in Figures 1, 2 and 3 in the <u>PS81 Report</u>.

Sample PS82 was a muddy sand and contained an average of 0.02% gravel, 76.14% sand and 23.84% mud, classified as a 'Slightly Gravelly Muddy Sand' according to the Blott & Pye (2012) scheme. The replicates were analysed by dry sieving and laser analysis. The benchmark laboratory observed that during several laser analysis reps it was evident that a few grains were being retained on the 1 mm sieve, and the full laser size distribution (to 2 mm) displayed a small volume above 1 mm. Therefore, the samples were all additionally wet separated at 1 mm. Although small, all samples contained particles >1mm and Sample 2833 also contained some particles >2mm, and hence was strictly classified as "slightly gravelly muddy sand"

according to Folk (1954) who specified that a 'trace' of gravel was sufficient to classify it as "slightly gravelly". The sieve data shows consistent results between the replicates and triplicate laser analysis showed low variation, with %CV below the acceptable levels for all statistics. Results for the individual replicates are provided in Tables 1, 2, 3, 4 and 5, and are displayed in Figures 1, 2 and 3 in the <u>PS82 Report</u>.

Sample PS83 was another mixed sediment sample containing an average of 58.05% gravel, 41.38% sand and 0.56% mud, classified as 'Sandy Gravel' according to the Blott & Pye (2012) scheme. Analysis of the triplicate laser analysis for each replicate sample showed that the %CVs for the D_{10} , D_{50} and D_{90} were well within the acceptable limits and therefore the replicates were deemed to have good reproducibility. Results for the individual replicates are provided in Tables 1, 2, 3, 4 and 5, and are displayed in Figures 1, 2 and 3 in the <u>PS83 Report</u>.

3.2.3 Results from participating laboratories

In each of the PS80, PS81, PS82 and PS83 reports, data provided by the participants are displayed in a series of tables and figures for comparison with each other and with the Benchmark Data. The Participant section provides three tables of data, the first outlining an overview of summary data including equipment and methodology used, the use of any chemical dispersants or pre-treatments, the percentage gravel, sand and silt/clay recorded as well as the participants' post-analysis sediment descriptions. The second table provides the raw sieve weights for each half-phi interval submitted by each participant including the less than 1mm weights for the sieve shaker base pan fraction and the wet-separated and oven dried fraction and in the third table the final laser data submitted by each participant is shown. Tables showing the results of the triplicate laser analysis supplied and the Coefficient of Variance of the D₁₀, D₅₀ and D₉₀ are available in Appendix 4. These tables are accompanied by a series of graphs and bar charts which allow the results to be visually compared. Appendix 2 shows the data used to create the percentage gravel, sand, silt and clay bar-charts. The final merged data submitted by each participant and the benchmark laboratory are provided in Appendix 4.

3.2.3.1 Eightieth distribution – PS80

There was generally good agreement for PS80 between the results for the Benchmark replicates and those supplied by the participating laboratories, (see Figure 1). Table 6 in the report shows that none of the participants used chemical dispersants or peroxide pre-treatments. All participants recorded a Gradistat textural group of 'Muddy Sand'. No gravel

was recorded by any of the participants; percentage sand ranged from 45.13% (PSA_2813) to 66.89 (PSA_2812) and conversely the percentage of mud ranged from 33.11% (PSA_2812) to 54.87% (PSA_2813).

Figure 1. Particle size distribution curves for sediment distributed as PS80 (Figure 6 in PS80).

As recorded in Table 6 of the <u>PS80 report</u>, all but three laboratories (PSA_2809, PSA_2813 and PSA_2829) followed the NMBAQC methodology). All participants analysed the sample using a laser analyser. Table 7 shows that only one participant (PSA_2814) also undertook sieve analysis, recording 0.002g greater than 1mm and 0.067g in the base pan.

Figure 2. Stacked column chart showing the percentage gravel, sand, silt and clay for sediment distributed as PS80 (Figure 7 in PS80).

The sample showed some variation in the amount of clay recorded in relation to the model of laser analyser used. Those participants using Beckman Coulter instruments recorded a higher percentage of clay than those using Malvern Mastersizer instruments, as shown in Figure 2. Participants PSA_2802, PSA_2803, PSA_2808 as well as the Benchmark Lab use the Beckman Coulter LS13320 which uses a PIDS (Polarization Intensity Diffraction Scattering) system at the finer end, rather than diffraction, so provides better sensitivity than the Malvern system which employs diffraction of two different wavelengths of light (red and blue). Participant PSA_2815 is the only laboratory to use a Fritsch laser analyser, which recorded an amount of clay consistent with laboratories using the Beckman Coulter instruments.

3.2.3.2 Eighty-first distribution – PS81

There was good agreement for PS81 between the results from the analysis of the benchmark replicates and those from the participating laboratories (see Figure 3). Participant PSA_2829 re-submitted their data after the interim report had been issued as they had inverted their 1mm and 2mm sieve fraction data in their original submission. All of the participants had a Gradistat textural group of 'Gravelly Muddy Sand'. Participant PSA_2813 does not subscribe to the sieve aspect of the module and therefore were assessed on the laser analysis only. The

percentage of gravel recorded by the participants (see Figure 4), ranged from 12.86% (PSA_2809) to 19.73% (PSA_2829). The percentage of sand ranged from 61.27% (PSA_2807) to 73.80% (PSA_2801) and the percentage of mud ranged from 9.80% (PSA_2801) to 21.57% (PSA_2707).

Figure 3. Particle size distribution curves for sediment distributed as PS81.

Appendix 2 shows that as with PS80, the percentage of clay recorded showed some variation with laser manufacturer. The three participants using Beckman Coulter instruments recorded between 2.62% and 3.69% clay, whereas those using the Malvern Mastersizer instruments recorded between 0.36% and 3.13% clay. The highest proportion of clay (5.73%) was recorded by Participant PSA_2815, which uses a Fritsch laser analyser.

Figure 4. Stacked column chart showing the percentage gravel, sand, silt and clay for sediment distributed as PS81 (Figure 7 in PS81).

3.2.3.3 Eighty-second distribution – PS82

Due to an administrative error, the samples for exercise PS82 were incorrectly labelled as 'PS83'. This was quickly noticed by three of the participant laboratories and a clarification email was immediately sent out to all participants to correct the error and allow them to distinguish sample PS82 from PS83 before they began any analysis.

There was good agreement for PS82 between the results reported by the participating laboratories and those obtained for the benchmark replicates, as seen in Figure 5. Two participants (PSA_2809 and PSA_2815) chose to re-submit data after the issue of the interim report to correct transcription errors in their original laser data submissions. Table 6 in the report also shows the variation between data received from the participating laboratories; the percentage of sand ranged from 70.63% (PSA_2835) to 87.98% (PSA_2804) and percentage mud ranged from 11.97% (PSA_2804) to 29.35% (PSA_2507). None of the participants used chemical dispersants or peroxide pre-treatments.

Figure 5. Particle size distribution curves for sediment distributed as PS82 (Figure 6 in PS82).

Of those following the NMBAQC methodology eight participants (PSA_2802, PSA_2804, PSA_2806, PSA_2807, PSA_2808, PSA_2812, PSA_2814 and PSA_2835) chose to undertake sieve and laser analysis on this sample, the remainder only undertook laser analysis. Those that undertook sieve analysis found small amounts (0.08g – 0.24g) of sediment greater than 1mm, equating to a gravel percentage of 0.02% to 0.05% of the total sample. The NMBAQC guidance states in "5.4.2 *Laser diffraction analysis of <1mm sediment fraction*" that "...if no sediment >1mm is left on the 1mm mesh [when preparing a laser sub-sample from the bulk], then no further analysis is required". With such small amounts of sediment greater than 1mm found in the entire sample it is unlikely that significant amounts of sediment greater than 1mm were present on the mesh when preparing a laser sub-sample and therefore sieve analysis did not have to be undertaken. Participants were not penalised for undertaking this extra analysis as it had little effect on the overall distribution of the sample.

The eight participants that carried out sieve and laser analysis all recorded a Gradistat textural group of 'Slightly Gravelly Muddy Sand', whilst the nine participants that only carried out laser analysis all recorded a Gradistat textural group of 'Muddy Sand'.

Figure 6. Stacked column chart showing the percentage gravel, sand, silt and clay for sediment distributed as PS82 (Figure 7 in PS82).

Laboratory PSA_2815 is the only participant that uses a Fritsch Analysette 22 and for this exercise opted to submit two sets of data which were analysed separately under 'broad' and 'very broad' settings to see what effect this would have on comparisons with the benchmark data. The 'broad' data were presented in the report as 'PSA_2815a' and the 'very broad' data were presented as 'PSA_2815b'. Whilst the overall distributions were similar for both submissions (see Figure 6), the 'broad' settings produced results that were trimodal whereas the Benchmark data and other participants were unimodal (Figure 9 & Table 8 in the <u>PS82</u> <u>Report</u>). This dataset recorded higher proportions of coarse and medium sand and lower proportions of fine and very fine sand compared to the benchmark data. The 'very broad' settings produced results were in profile to the benchmark data and with a lower proportion of coarse sand than the 'broad' setting.

3.2.3.4 Eighty-third distribution – PS83

There was generally good agreement in results between the laboratories and the benchmark data (see Figure 7). The distribution curve for Participant PSA_2829 deviates from the other participants as their methodology only uses 1mm and 2mm sieves. Their sieve data are therefore not comparable to the benchmark and were not assessed for this exercise.

Participant PSA_2813 does not subscribe to the sieve aspect of the module and were assessed on the laser analysis only. Participant PSA_2809 chose to re-submit data after the issue of the interim report to correct a transcription error in their original laser data submission. All but one of the participants had a Gradistat textural group of 'Sandy Gravel', the exception being PSA_2815 whose results were classified as 'Muddy Sandy Gravel'. The percentage of gravel recorded by the participants (see Figure 8), ranged from 57.90% (PSA_2806) to 61.62% (PSA_2814). The percentage of sand ranged from 37.52% (PSA_2815) to 41.90% (PSA_2801) and the percentage mud ranged from 0.00% (PSA_2801, PSA_2812) to 4.48% (PSA_2815).

Figure 7. Particle size distribution curves for sediment distributed as PS83 (Figure 7 in PS83).

Figure 8. Stacked column chart showing the percentage gravel, sand, silt and clay for sediment distributed as PS83 (Figure 7 in PS83).

Appendix 2 shows that laser manufacturer did not have much of an impact on the results as only small amounts of clay were recorded; the participants using Malvern Mastersizer instruments recorded no clay content at all, whilst the three using Beckman Coulter instruments only recorded less than 0.5% clay. The Fritsch laser analyser used by Participant PSA_2815 recorded the highest proportion of clay (2.05%).

3.2.4 Discussion

The exercise reports show that most participants follow the NMBAQC methodology for these exercises; those that do not, do so for genuine reasons. PSA_2813 do not undertake analysis of sediment greater than 1mm so chose to only participate in the laser analysis for PS80, PS81, PS82 and PS83.

3.2.4.1 Sieve Analysis (>1mm)

The two exercises that contained larger quantities of sediment greater than 1mm (PS81 and PS83) show that the dry sieve analysis (>1mm) undertaken by participants was generally in agreement with each other and the benchmark data (see Figure 9). There is some variation, but this is to be expected with varying sieve times and amplitudes. The benchmark lab

recorded a sieve time of 10mins and amplitude of 1.5mm/'g'. Of the sieve metadata provided by participants, sieve time varies from 2 to 30 minutes; sieve amplitude often didn't include a unit of measurement. Units of measurement may vary due to differing brands of sieve shaker. Sediment type may also be a contributing factor, brittle or chalky material may break up more easily and the longer and more vigorously the sample is shaken the greater the effect will be on the sample.

Figure 9. Bar charts showing raw sieve data as percentages in each half-phi interval for PS81 and PS83

3.2.4.2 Laser Analysis (<1mm)

Figure 10 shows the cumulative and differential curves for the laser data for each exercise. Although the results continue to show improvement from previous years, laser analysis remains the main source of variability between participants. All participants re-scaled their laser data to 100%; however, participants not following NMBAQC methodology included laser data for fractions up to 2mm. Where this was the case (Exercises PS81, PS82 and PS83 for PSA_2813; exercises PS81 and PS83 for PSA_2829), final laser data were re-scaled to include only the <1mm fractions for comparisons with benchmark and other participant data.

As in previous years it was apparent in the exercises that required laser analysis and had a significant mud fraction (PS80, PS81 and PS82) that there were some differences in results depending on which laser instrument was being used. The participants using the Beckman Coulter and Fritsch instruments recorded a higher percentage of clay than those using Malvern instruments, the Beckman Coulter instruments have greater measurement sensitivity and along with the Fritsch analyser were the only instruments capable of detecting particles below 0.345µm. The results obtained using the Beckman Coulter instruments also showed a much greater degree of similarity to each other than those using generated using the Malvern instruments. However, there were still slight differences detected between the participants using Coulter instruments, which could be due to differences in the samples supplied to each lab, different sub-sampling, sample dispersion and/or sample presentation procedures being used.

These differences between laser manufacturers were taken into consideration when comparing participant data with the Benchmark data especially where participants used the Malvern analysers as the Benchmark data is created using a Beckman Coulter.

Laser metadata are very important in helping to identify where possible mistakes are made and whether it is an issue with the laser or a sample preparation problem. For this reason, provision of metadata is a compulsory requirement. Whilst the format of this year's workbooks has been updated, the laser metadata section maintained a very similar format to the previous year, allowing participants to complete the form from a set of drop-down menus. The majority of participants supplied laser metadata in the current year, PSA_2809 were the only participant to provide no laser metadata beyond the laser model and dispersion unit for any of the exercises.

Figure 10. Cumulative and differential final laser data provided by participants for exercises PS80, PS81, PS82 and PS83.

The NMBAQC recommends using the Mie Theory model, a Particle Refractive Index of 1.55 and a Particle Absorption Index of 0.1, the dispersant used is water which has a Refractive Index of 1.33. Based on the information supplied, most participants are now using the NMBAQC Guidance recommendations. Participants that were not following the recommendations were reminded to do so in their results.

For Exercises PS80, PS81, PS82 and PS83 all the participants that submitted metadata are now using the Mie Theory analysis model. All of the participants that provided metadata information used a Particle Absorption Index of 0.1. Most participants used a Particle Refractive Index of 1.55, although there were variations: 1.52 (PSA_2801, PSA_2811 and PSA_2813) and 1.59 (PSA_2835). All participants using Beckman Coulter laser analysers used the PIDS (Polarized Intensity Differential Scattering) system as the fines extension; all participants using Malvern Mastersizer instruments used both the red and blue light wavelengths.

There remains a degree of variation in the pump and stirrer speeds and the use of ultrasonics, this could potentially be standardised in future scheme years.

These factors are probably mostly responsible for the variation in the laser size distributions seen in Figure 9. It is not always obvious why a result appears to be different without detailed laser metadata. In addition to laser instrument set-up conditions and performance there are other factors that could be affecting the results, including sample preparation, sample dispersion methods and sample presentation to the laser instrument, about which little or no information has been provided.

3.2.5 Application of NMBAQC Scheme Standards and Laboratory Performance

One of the key roles of the Particle Size Analysis component of the NMBAQC Scheme is to assess the reliability of data collected as part of the Clean Seas Environment Monitoring Programme (CSEMP; formerly UK NMMP) and Water Framework Directive (WFD) monitoring programmes. With this aim, performance target standards were defined for certain Scheme modules and applied in 1996/97 (Scheme year three). These standards were the subject of a review in 2001 (Unicomarine, 2001) and were altered in Scheme year eight; each performance standard is described in detail in the Description of the Scheme Standards for the Particle Size Analysis Component document. An overall summary of the data reported by each participant is presented in each of the PS exercise reports, and along with this each participant receives a results table outlining their individual performance. In previous years laboratories meeting or exceeding the required standard for a given exercise would be considered to have performed satisfactorily for that particular exercise; a flag indicating a "Pass" or "Fail" would be assigned to each laboratory for each of the exercises concerned. As the Pass/Fail criteria are still under

review for the PS exercises, in 2021/22 (Scheme year 28) a "Good" or "Review" flag has been issued for Sieve analysis (>1mm), Laser Analysis (<1mm) and Final Data. This aims to highlight any potential errors but will not be used to assess the performance of a laboratory. As this is a training exercise rather than a proficiency test, participants are encouraged to review their results especially where "Review" flags have been issued and can re-submit improved data after the issue of the interim report. Each laboratory was issued with a Statement of Performance certificate outlining their results and participation in the Scheme.

4. Particle Size Own Sample Analysis (PS-OS) module

4.1 Description

The Particle Size Own Sample (PS-OS) module was first introduced in Scheme year 21 (2014/15) as a training/audit module and now is in its eighth year of operation. Participants' "own" samples are re-analysed by the NMBAQC Scheme PSA contractor and the results are compared. The purpose of this exercise is to examine the accuracy of particle size analysis for participants' in-house samples. In its first year (2014/15) the PS-OS exercises carried a trial Pass/Fail criterion based on the correlation between the participant data and the AQC data. After discussions between KPAL, APEM and the Scheme's PSA Contract Manager (Claire Mason, Cefas), it was decided that a more simplistic approach to analysing the results would be more appropriate in identifying errors in participants' results. The results now follow a similar format to the PS exercises and were split into sieve processing, laser processing and final data. Participants received a "Good" or "Review" flag based on their results. Where a "Review" flag was issued comments were supplied detailing problems that had arisen and where to find information to help address them.

4.1.1 Analysis required

Laboratories were requested to submit details of a survey with at least 12 samples from their previous year's Clean Seas Environment Monitoring Programme (formerly NMMP) samples, or similar alternative sampling programmes (if not responsible for CSEMP samples), along with the associated PSA data. Once these data were provided, three samples were randomly chosen by APEM Ltd to be re-analysed by the NMBAQC Scheme's PSA contractor.

Spreadsheet based workbooks were distributed to each participating laboratory via email for each PS-OS exercise. These were to be returned to APEM Ltd via the NMBAQC Scheme email address (<u>nmbaqc@apemltd.co.uk</u>). Slow or missing returns for exercises lead to delays in

processing the data and resulted in difficulties with reporting and rapid feedback of results to laboratories.

In each workbook a written description of the sediment classification was to be recorded, a visual estimate was made prior to analysis and a post analysis classification based on the percentages of gravel, sand and silt/clay and the Folk (1954) terminology. Any use of hydrogen peroxide treatment or chemical dispersant was also to be recorded. Also requested was a breakdown of the particle size distribution of the sediment, expressed as a weight or weight percentage of sediment in half-phi (ϕ) intervals, as well as sieve and laser metadata to provide insight into laboratory procedures, especially for the laser analysis.

The different components of each PS-OS sample (< 1mm, > 1mm and laser sub-sample) were to be sent to APEM's Letchworth laboratory to be passed on to the NMBAQC Scheme PSA contractors. The two sets of results were then compared by APEM Ltd.

Due to the ongoing delays resulting from the Covid-19 pandemic the timetable for the PS-OS module was altered to allow participants more time to submit data. Participants who took part in Batch 1 submitted data by 5th November 2021, had samples selected by the 10th December 2021 and reports were issued at the beginning of April 2022; Batch 2 submitted data by 25th March 2022, had samples selected by the 15th April 2022 and reports were issued by the end of June 2022.

4.2 Results

4.2.1 General comments

Eleven laboratories subscribed to the PS-OS module in 2021/22. One of the eleven laboratories had eleven lab-codes to facilitate multiple PS-OS submissions. Eight of the eleven laboratories that subscribed to the module provided data and samples for re-analysis. Participant PSA_2802 chose not to participate due staff shortages and ongoing Covid-19 restrictions.

Each laboratory received detailed comparisons of their data with the re-analysis results obtained by the NMBAQC Scheme's contractor. Where the original analysis was performed by the Scheme's contractor an external auditor was used to re-analyse the samples. Results were split into sieve processing, laser processing and final data. At the end of each report participants received a "Good" or "Review" flag based on their results; where "Review" flags were issued, comments were made on errors that had arisen and where possible information was provided to help resolve problems.

All the laboratories that provided samples provided all necessary fractions of their sample for re-analysis; except for participant PSA_2801 who did not provide any laser sub-samples and therefore after weighing, the dried <1mm fractions were used for laser analysis. This required re-wetting and mixing into a soft but stiff paste consistency in order to extract representative laser subsamples. Participant PSA_2806 bagged the sediment retained on each sieve in the original analysis separately. The AQC laboratory noted that this makes it difficult to empty 100% of the sample from the bags, potentially leading to slight underestimation of the sample weight, although every effort was made to extract as much sediment as possible. There is no need to bag each individual sieve fraction, particularly as this only serves to hamper rather than hinder any reanalysis.

There was generally good agreement between the participants and the AQC results, particularly in terms of basic sediment textural classification (see Table 1).

Lab	Sample	Primary Sediment Description	AQC Sediment Description		
PSA_2801	PS-OS 22	Gravelly Muddy Sand	Gravelly Muddy Sand		
	PS-OS 23	Muddy Sandy Gravel	Muddy Sandy Gravel		
	PS-OS 24	Gravelly Mud	Gravelly Mud		
PSA_2803	PS-OS 22	Gravelly Muddy Sand	Gravelly Muddy Sand		
	PS-OS 23	Slightly Gravelly Muddy Sand	Slightly Gravelly Muddy Sand		
	PS-OS 24	Slightly Gravelly Sandy Mud	Slightly Gravelly Muddy Sand		
PSA_2806	PS-OS 22	Slightly Gravelly Muddy Sand	Slightly Gravelly Muddy Sand		
	PS-OS 23	Slightly Gravelly Mud	Slightly Gravelly Mud		
	PS-OS 24	Slightly Gravelly Sandy Mud	Slightly Gravelly Sandy Mud		
PSA_2807	PS-OS 22	Gravelly Sand	Gravelly Sand		
	PS-OS 23	Gravelly Mud	Gravelly Mud		
	PS-OS 24	Slightly Gravelly Sandy Mud	Slightly Gravelly Sandy Mud		
PSA_2808	PS-OS 22	Slightly Gravelly Muddy Sand	Slightly Gravelly Muddy Sand		
	PS-OS 23	Slightly Gravelly Muddy Sand	Slightly Gravelly Sand		
	PS-OS 24	Slightly Gravelly Muddy Sand	Slightly Gravelly Sand		
PSA_2816	PS-OS 22	Sand	Slightly Gravelly Sand		
	PS-OS 23	Sand	Slightly Gravelly Sand		
	PS-OS 24	Muddy Sand	Gravelly Muddy Sand		
PSA_2817	PS-OS 22	Slightly Gravelly Sand	Slightly Gravelly Sand		

	PS-OS 23	Sand	Sand
	PS-OS 24	Slightly Gravelly Sand	Slightly Gravelly Sand
PSA_2818	PS-OS 22	Muddy Gravel	Muddy Gravel
	PS-OS 23	Slightly Gravelly Sand	Slightly Gravelly Sand
	PS-OS 24	Gravelly Sand	Gravelly Sand
PSA_2819	PS-OS 22	Gravelly Mud	Gravelly Mud
	PS-OS 23	Slightly Gravelly Sandy Mud	Slightly Gravelly Sandy Mud
	PS-OS 24	Slightly Gravelly Sand	Slightly Gravelly Sand
PSA_2820	PS-OS 22	Slightly Gravelly Sandy Mud	Slightly Gravelly Sandy Mud
	PS-OS 23	Slightly Gravelly Muddy Sand	Slightly Gravelly Muddy Sand
	PS-OS 24	Slightly Gravelly Sand	Slightly Gravelly Sand
PSA_2821	PS-OS 22	Gravelly Sand	Gravelly Muddy Sand
	PS-OS 23	Muddy Sandy Gravel	Muddy Sandy Gravel
	PS-OS 24	Slightly Gravelly Sand	Slightly Gravelly Sand
PSA_2822	PS-OS 22	Slightly Gravelly Muddy Sand	Slightly Gravelly Muddy Sand
	PS-OS 23	Muddy Sandy Gravel	Muddy Sandy Gravel
	PS-OS 24	Sand	Slightly Gravelly Sand
PSA_2823	PS-OS 22	Slightly Gravelly Sandy Mud	Slightly Gravelly Sandy Mud
	PS-OS 23	Slightly Gravelly Sand	Slightly Gravelly Muddy Sand
	PS-OS 24	Gravelly Sand	Gravelly Sand
PSA_2824	PS-OS 22	Slightly Gravelly Sand	Slightly Gravelly Sand
	PS-OS 23	Slightly Gravelly Sand	Slightly Gravelly Sand
	PS-OS 24	Slightly Gravelly Sand	Slightly Gravelly Sand
PSA_2825	PS-OS 22	Sandy Mud	Sandy Mud
	PS-OS 23	Slightly Gravelly Muddy Sand	Slightly Gravelly Muddy Sand
	PS-OS 24	Slightly Gravelly Sand	Slightly Gravelly Sand
PSA_2826	PS-OS 22	Slightly Gravelly Muddy Sand	Slightly Gravelly Muddy Sand
	PS-OS 23	Slightly Gravelly Sandy Mud	Slightly Gravelly Sandy Mud
	PS-OS 24	Gravelly Muddy Sand	Gravelly Muddy Sand
PSA_2827	PS-OS 22	Sandy Gravel	Sandy Gravel
	PS-OS 23	Sandy Mud	Slightly Gravelly Sandy Mud
	PS-OS 24	Slightly Gravelly Sand	Slightly Gravelly Sand
PSA_2828	PS-OS 22	Slightly Gravelly Muddy Sand	Slightly Gravelly Muddy Sand
	PS-OS 23	Sand	Sand
	PS-OS 24	Sand	Slightly Gravelly Sand

Table 1. Gradistat sediment descriptions from the primary data and the AQC re-analysis. Taken

 from Table 6 of the individual PS-OS reports.

The greater than 1mm data created by dry sieving was in general very good, there were a few discrepancies, but these are to be expected due to factors such as breakage of particles during repeat analysis and variations in sieving time and vibration amplitude.

Small amounts of variability particularly in percentage clay shown in Figures 11, 12 and 13 can be explained by differing laser instruments used by the AQC lab and participants. As discussed earlier in this report, the Malvern Mastersizer 2000 and 3000 instruments do not have the same resolution as the Coulter LS13320, especially at the finer end; the Coulter uses a PIDS (Polarization Intensity Differential Scattering) system at the bottom end, rather than diffraction, so provides better sensitivity than the Malvern system which employs diffraction of two different wavelengths of light (red and blue). Often the Coulter system reports higher mud content than the Malvern machines and the distributions produced by the Malvern tend to be more smoothed, and less able to identify discrete size modes. The output size distribution from the Malvern instruments machines is very dependent on the diffraction pattern interpretation model used; this can be selected by the operator as "General Purpose, Unimodal, and Multimodal etc." and can give rise to uncertainty. There is no such specification requirement with the Coulter instruments.

Participant PSA_2803 displays differences from the AQC analysis in sand, silt and clay content in all three samples (see Table 2). The differences in PS-OS 24 cause the original analysis and the AQC analysis to have differing sediment textural groups (see Table 1); the participant recorded the sample as Slightly Gravelly Sandy Mud and the AQC as Slightly Gravelly Muddy Sand.

Table 2 shows that for PS-OS 20 the AQC analysis recorded between 10.4% and 13.19 less sand and proportionally more silt than the original analysis undertaken by PSA_2803. It is unclear what is causing these differences since both the primary and AQC laboratories use Beckman Coulter LS 13320 analysers but could be caused by poor sample preparation, poor homogenisation or presentation to the laser.

	Primary	AQC	Primary	AQC	Primary	AQC
	PS-OS 22	PS-OS 22	PS-OS 23	PS-OS 23	PS-OS 24	PS-OS 24
Gravel	22.57	22.45	0.53	0.54	0.79	0.82
Sand	46.50	56.54	56.06	69.25	49.15	59.98
Silt	27.89	18.08	39.44	25.68	46.43	33.44
Clay	3.04	2.94	3.97	4.53	3.63	5.77

Table 2. Percentage Gravel, Sand, Silt and Clay recorded in PS-OS 22, 23 and 24 for participantPSA_2803 and the AQC lab. Data used to create bar charts seen in Figure 10.

The differences in textural groups between participants PSA_2808, PSA_2821, PSA_2822, PSA_2823 and the AQC data were due to very small differences that shifted the sediment descriptions. In sample PSA_2808 PS-OS 23 the AQC data recorded 3.61% less mud than the participant and in PSA_2808 PS-OS 24 the AQC laboratory recorded 1.97% less mud than the participant laboratory. In both cases this led to the AQC laboratory recording the sample as "Slightly Gravelly Sand" rather than the "Slightly Gravelly Muddy Sand" recorded by the participant. In sample PSA_2821 PS-OS 22 the AQC laboratory recorded 3.66% more mud than the primary data causing the AQC data to be classified as "Gravelly Muddy Sand" rather than the "Gravelly Sand" recorded by the participant. For sample PSA_2823 PS-OS23 the AQC laboratory recorded 5.39% more mud than the participant, resulting in the sample being classified as "Slightly Gravelly Muddy Sand" rather than "Slightly Gravelly Sand".

For samples PSA_2622 PS-OS 24, PSA_2827 PS-OS 23 and PSA_2828 PS-OS 24, the AQC reanalysis recorded very small amounts of sediment greater than 1mm (0.06g for PSA_2622 PS-OS 24; 0.05g for PSA_2827 PS-OS 23 and 0.15g for PSA_2828 PS-OS 24). The AQC analysis for PSA_2622 PS-OS 24 was therefore described as "Slightly Gravelly Sand" as opposed to just "Sand"; PSA_2827 PS-OS 23 was described as "Slightly Gravelly Sandy Mud" rather than "Sandy Mud"; and PSA_2828 was described as "Slightly Gravelly Sand" rather than "Sand". The NMBAQC guidance states that "...if no sediment >1mm is left on the 1mm mesh [when preparing a laser sub-sample from the bulk], then no further analysis is required". With such small amounts of sediment greater than 1mm found in the entire sample it is unlikely that significant amounts of sediment greater than 1mm were present on the mesh when preparing a laser sub-sample and therefore sieve analysis did not have to be undertaken.

Participant PSA_2816 provided data that did not contain any sediment greater than 1mm, but during the AQC analysis some >1 mm particles and shells were retained on the 1mm mesh.

Therefore, a standard NMBAQC analysis was performed on these samples. For samples PS-OS 22 and PS-OS 23 less than 0.1% of >1mm shell fragments were found, causing these samples to be classified as "Slightly Gravelly". However, for sample PS-OS 24 10.88% of the sample comprised shells and shell fragments resulting in the sample being classified as "Gravelly Muddy Sand" by the AQC laboratory compared to the "Muddy Sand" recorded by the participant. With such a significant amount of >1mm material present in the latter sample, wet separation and sieve analysis should have been carried out during the primary analysis.

Figure 11. Bar charts showing percentage gravel, sand, silt and clay in the PS-OS module from laboratories PSA_2801, PSA_2803, PSA_2806, PSA_2807, PSA_2808 and PSA_2816.

Figure 12. Bar charts showing percentage gravel, sand, silt and clay in the PS-OS module from laboratories PSA_2817, PSA_2818, PSA_2819, PSA_2820, PSA_2821 and PSA_2822.

Figure 13. Bar charts showing percentage gravel, sand, silt and clay in the PS-OS module from laboratories PSA_2823, PSA_2824, PSA_2825, PSA_2826, PSA_2827 and PSA_2828.

4.3 Discussion

As in previous years, differences in laser analysis are still the main area of concern in the PS-OS samples. The interpretation of the methodology set out in the <u>NMBAQC Best Practice</u> <u>Guidelines (Mason, 2022)</u>, in particular how the laser analysis is undertaken still appears to be a possible issue in some cases. These guidelines, originally written in 2011, were based on the widespread use at that time amongst participants of Malvern Instruments laser diffraction instruments that have 15 – 25 second standard run times and generally are restricted to the analysis of material < 1mm in size. The original methodology suggested that:

- 1. A homogenised sub-sample of approximately 100ml is taken from the bulk sample for laser analysis (Laser Pot).
- A small representative sub-sample is taken from the Laser Pot and passed through a 1mm sieve using as little water as possible (Replicate 1).
- 3. All of Replicate 1 is then run through the laser at the desired obscuration, producing three run results.

Steps 2 and 3 are then repeated to create Replicates 2 and 3, giving a final result of 9 runs to create the final laser data, the average of these 9 runs.

The completion of nine analyses, and subsequent merging of results is necessarily a timeconsuming process, especially if standard run times longer than 15 to 25 seconds are used (e.g. 60 seconds is standard with Beckman Coulter instruments (if the PIDS system is activated). It has been demonstrated by KPAL that, for most samples, there is little practical benefit in routinely carrying out analysis of three replicate sub-samples if samples are homogenised properly both before the laser sub-sample is taken from the bulk sample and when the test sample is taken from the laser sub-sample, and the sample is adequately dispersed prior to presentation to the instrument. In relatively rare instances where samples consist very largely of > 1mm size material and it is impractical to obtain a representative laser sub-sample from the bulk sample, more consistent laser results can be obtained by taking a laser sub-sample from the wet separated < 1mm fraction of the sediment, rather than from the bulk sample.

Where samples display, or are suspected of, unstable behaviour, such as time-dependent agglomeration, one or more repeat runs of the same test sample should be carried out, and

additional replicate test samples analysed. Sometimes this may require repeat runs of more than three replicates to fully characterise agglomerative behaviour, and to establish the best dispersal procedures required to obtain repeatable results (e.g. ultrasonic treatment before as well as during the analysis run, and/or use of chemical dispersants). If the laser sub-sample is visually heterogeneous, and/or during the preparation of the test sample it is observed that small amounts of sand are present within a mainly muddy matrix, two or more test samples should be analysed. Additionally, for QA purposes, it is good practice to carry out at least duplicate analysis on 1 in 10 samples. The guidance has been updated to incorporate most of these findings and recommendations, with some further follow up expected at future NMBAQC PSA workshops. The most recent version of the guidance can be viewed in Mason (2022).

The returns for the 2021/22 PS-OS module showed that some laboratories, particularly those using Coulter instruments, in routine case work only run one laser test sample, with, for QA demonstration purposes, replicates run every 10th, 20th or 50th sample, dependent on sediment type (less frequently for well sorted uniform sand samples than for poorly sorted muddy sand and muddy sandy gravel mixtures). The results obtained by KPAL, for the NMBAQC replicates samples prepared by APEM since 2014/15, demonstrate that the high degree of repeatability which can be obtained when strict analysis protocols are followed, and that a high degree of confidence can be placed in the results obtained for any individual analysis.

The PS-OS module also revealed that a few participants do not follow the NMBAQC methodology for routine samples. This generally occurs when a participant does not have access to a laser analyser, in this case only the sieve and final data can be compared. Participants are encouraged to participate even when samples have been analysed following a different methodology as long as details of the methodology used are presented clearly. Although re-analysis will be undertaken following the NMBAQC methodology this gives a chance to compare how results differ when using alternate methodologies. Using a different methodology will always be taken into consideration when comparing the primary and AQC analysis.

5. Conclusions and Recommendations

A number of observations may be made based on the results of the exercises described above. The following is a summary of the major points of importance. 1. Laboratories should ensure that they follow the NMBAQC methodology when participating in the Particle Size (PS) Ring Test. The PS Ring Test is designed to test whether all participants are getting comparable results when they follow the same methodology. It is therefore important that only the NMBAQC methodology (Mason, 2022) is used where possible and that results for 3 x 3 laser analyses are provided. Participants who do not have access to a laser analyser will be permitted to use alternate methods for samples that contain sediment less than 1mm as long as the method used is detailed in the summary section of the workbook. Participants can choose to opt out of either the sieve or laser aspects if they do not routinely undertake that type of analysis. The participant must let the administrator know at the start of the scheme year if they wish to opt out of any analysis. Results will only be provided for the analysis that was undertaken and a note will be put on the Statement of Performance that the participant has opted out of certain points.

Samples for the PS-OS module can be analysed following alternative in-house methods however these must be thoroughly described and the participant should be aware that re-analysis will be undertaken following the NMBAQC methodology. Samples provided for PS-OS which have been routinely analysed do not necessarily have to provide 3 x 3 laser analysis data but should show that appropriate QC checks have been carried out, including on the final data set.

- 2. Participants should review their data prior to submission. Errors in datasets can often be spotted in the summary statistics, e.g. percentage gravel, sand and silt/clay, before the data are submitted. All parts of the workbook should be double checked before submission to ensure that they have all been completed correctly. This will help eradicate typing and transcription errors. The workbook was updated for the current Scheme Year (Year 28) to help enable the continuity of data through the workbook. Conditional formatting flags up red cells where there are possible data entry errors.
- 3. <u>The current NMBAQC Scheme Pass/Fail criteria for the PS modules are under review.</u> Currently results are broken down for review, including sieve processing, laser processing and final data. Laboratories then received a "Good" or "Review" flag based on their results; "Review" flags came with accompanying comments as to where mistakes have been made and how to correct them. This approach was thought to be more informative and would help participants to identify errors and correct any issues

for future exercises. Following the publication of 'Statistical comparisons of sediment particle size distributions' (Barry *et al.*, 2021) in Continental Shelf Research, data from previous and future reports will trial this new statistical method of comparing the benchmark and participant data to understand if we can achieve a pass/ fail criteria for the particle size component, with the possibility of a report detailing the outcomes available in the next couple of scheme years.

 Possible workshop looking at sample preparation and presentation to laser. Covid-19 restrictions put an end to any possible face to face workshops in Years 27 and 28, as restrictions ease this may become an option in the next couple of Scheme Years.

Most participants now use the recommended laser parameters of an optical model of Mie Theory with Particle Refractive index of 1.55 and a Particle Absorption Index of 0.1; however, the results can still differ from the Benchmark data and other participants. One possible reason for this could be due to sample preparation and homogenisation as well as presentation of the sample to the laser. Another issue that has occurred is whether muddy samples need only laser analysis or whether sieve analysis should be undertaken too. There were incidents where participants and the Benchmark lab recorded less than 1g of sediment greater than 1mm causing sample descriptions to become "slightly gravelly". The NMBAQC guidance states in "5.4.2 Laser diffraction analysis of <1mm sediment fraction" that "...if no sediment >1mm is left on the 1mm mesh [when preparing a laser sub-sample from the bulk], then no further analysis is required". With such small amounts of sediment greater than 1mm found in the entire sample it is unlikely that significant amounts of sediment greater than 1mm were present on the mesh when preparing a laser sub-sample and therefore sieve analysis did not have to be undertaken. A workshop, either in person or a webinar detailing how to create and homogenise a laser sub-sample, particularly looking at the use of ultrasonics may be useful in forth coming years.

5. <u>Health and Safety.</u> Recently the presence of asbestos in marine samples has been brought to light, although safe when the sample is wet, asbestos particles could become air-borne when analysing a particle size sample particularly during the dry sieving process. At the PSA workshop in December 2017, laboratories were informed how to mitigate the hazards associated with analysing samples that may contain asbestos. All the natural material used to create PS ring test samples continues to be

sent for presence/absence of asbestos before being distributed to participating laboratories. This will continue for subsequent years and participants can request to see the results of the tests by emailing nmbaqc@apemltd.co.uk .

6. References

Blott, S.J. and Pye, K. 2001 GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments. *Earth Surface Processes and Landforms* 26, 1237-1248.

Blott, S.J. & Pye, K. 2012 Particle size scales and classification of sediment types based on size distributions: review and recommended procedures. *Sedimentology* 59, 2071-2096.

Folk, R.L., 1954. The distinction between grain size and mineral composition in sedimentaryrock nomenclature. Journal of Geology 62, 344-359.

Hall, D.J. 2010 National Marine Biological Analytical Quality Control Scheme. Description of Scheme Standards for the Particle Size Analysis Component from Scheme Year 8 (2001/02) to Year 16 (2009/10). Report to the NMBAQC Scheme participants. Unicomarine report NMBAQCpsa_stds, February 2010.

Mason, C. 2022. NMBAQC's Best Practice Guidance. Particle Size Analysis (PSA) for Supporting Biological Analysis. National Marine Biological AQC Coordinating Committee, 84pp, First published 2011, updated March 2022.

Pears, S., McIntyre-Brown, L. & Hall, D., 2022. National Marine Biological Analytical Quality Control Scheme. Particle Size Results: PS80 Report to the NMBAQC Scheme participants. Apem Report NMBAQCps80, January 2022.

Pears, S., McIntyre-Brown, L. & Hall, D., 2022. National Marine Biological Analytical Quality Control Scheme. Particle Size Results: PS81 Report to the NMBAQC Scheme participants. Apem Report NMBAQCps81, January 2022.

Pears, S., McIntyre-Brown, L. & Hall, D., 2022. National Marine Biological Analytical Quality Control Scheme. Particle Size Results: PS82 Report to the NMBAQC Scheme participants. Apem Report NMBAQCps82, February 2022. Pears, S., McIntyre-Brown, L. & Hall, D., 2022. National Marine Biological Analytical Quality Control Scheme. Particle Size Results: PS83 Report to the NMBAQC Scheme participants. Apem Report NMBAQCps83, February 2022.

Unicomarine. 1995 National Marine Biological Quality Control Scheme. Annual Report (Year one). Report to the NMBAQC Committee and Scheme participants. September 1995.

Unicomarine. 1996 National Marine Biological Quality Control Scheme. Annual Report (Year two). Report to the NMBAQC Committee and Scheme participants. September 1996.

Unicomarine. 2001 National Marine Biological Analytical Quality Control Scheme. Own Sample Format and Standards Review: Current Problems and Proposed Solutions. Report to the NMBAQC Committee. April 2001.