

PHY-ICN-15-MI1 VR 1.0

Rafael Salas¹ & Jacob Larsen²

¹Marine Institute, Rinville, Oranmore, Co.Galway, Ireland

² IOC Science and Communication center on harmful algae Department of Biology, University of Copenhagen, Øster Farimagsgade 2D 1353 Copenhagen K. Denmark Table of Contents:

5. Discussion

1.	Summary of results	Pages 4-5
2.	Introduction	Pages 6-7
3.	Materials and Methods	Pages 7-11
	3.1 Sample preparation, homogenisation and spiking	Pages 7-8
	3.2 Culture material, treatments and replicates	Page 8
	3.3 Cell concentration	Page 8-9
	3.4 Sample randomization	Page 9
	3.5 Forms and instructions	Pages 9
	3.6 Statistical analysis	Page 9-10
	3.7 Bequalm online HAB quiz	Pages 10-11
4.	Results	Pages 11-26
	4.1 Homogeneity and stability study	Pages 11-12
	4.2 Outliers and missing values	Pages 12
	4.3 Analysts' data	Pages 12-13
	4.4 Assigned value and its standard uncertainty	Page 13-14
	4.5 Comparison of the assigned value	Page 14-15
	4.6 Calculation of performance statistics	Page 15
	4.6.1 Z-scores	Page 15-16
	4.7 Combined performance statistics	Pages 16
	4.7.1 RLP and RSZ	Page 16
	4.7.2 Plots of repeatability standard deviation	Page 17
	4.8 Qualitative data	pages 17-18
	4.9 Ocean teacher online HAB quiz	Pages 18-26

2

Pages 27-34

Annex I: Form 1: Return slip and checklist	Page 35
Annex II: Form 2: Enumeration and identification results log sheet	Page 36
Annex III: Test Instructions	Pages 37-47
Annex IV: Workshop Agenda	Page 48
Annex V: Participating laboratories	Page 49
Annex VI: Statement of performance certificate	Page 50-51
Annex VII: Homogeneity and stability test	Pages 52-65
Annex VIII: Analysts results	Pages 66-68
Annex IX: Robust mean + SD iteration ISO13528	pages 69-75
Annex X: Summary of Z-scores for all measurands	Pages 76-79
Annex XI: Summary of statistical parameters and laboratory means	pages 80-83
Annex XII: Graphical summary of results	Pages: 84-90
Annex XIII: Mandel's h and k statistics	Pages 91-92
Annex XIV: RLP + RSZ for all measurands	Page 93
Annex XV: Charts of repeatability standard deviations	Pages 94-100
Annex XVI: Ocean teacher online HAB quiz	Pages: 101-114
Annex XVII: HABs Ocean teacher analyst results	Pages 115-117

1. Summary of results

• 89 analysts from 39 laboratories took part in this intercomparison exercise. 84 analysts returned sample results and 81 completed the online Hab quiz.

• There were 68 participants from laboratories across Europe, 18 from South America, 2 in Australia and 1 in Asia.

• There were nine species of interest in this intercomparison exercise. These were: *Scrippsiella trochoidea* (Stein) Loeblich III, *Prorocentrum micans* Ehrenberg, *Pseudo-nitzschia australis* Frenguelli, *Lingulodinium polyedrum* (F.Stein) J.D.Dodge, *Paralia sulcata* (Ehrenberg) Cleve, *Dytilum brightwellii* (T.West) Grunow, *Guinardia delicatula* (Cleve) Hasle, *Coscinodiscus granii* Gough and *Asterionellopsis glacialis* (Castracane) Round.

• The cell counts of the species *Asterionellopsis glacialis* and *Paralia sulcata* which did not preserve well in the samples were finally not used for statistical purposes.

• The average and confidence limit for each test item was calculated using the robust algorithm in annex C of ISO13528 which takes into account the heterogeneity of the samples and the between samples standard deviation from the homogeneity and stability test. ISO 13528 is only valid for quantitative data. We have used the consensus values from the participants.

All measurands passed the F-test but not all passed ISO13528. The homogeneity test according to ISO 13528 was passed for 3 of the measurands (*S.trochoidea, P. micans , L. polyedrum*) and failed 4 (*P.australis, D.brightwellii G.delicatula* and *C.granii*). The stability test passed 6 of the 7 measurands but failed *C.granii*.

• The consensus values new Standard deviation (STD) was used for all measurands regardless of the Pass/Fail flags from the homogeneity test.

• The assigned value uncertainties across all measurands for the test are negligible but the comparison with the homogeneity test suggests significant differences for some of the measurands. The relative STD for the measurands seems to be independent of the cell concentration and the frequency distribution is not normal across all measurands.

• Z-scores show a small number of action signals across all measurands. 4 red flags and 18 yellow flags from 588 flags is evidence of good performance overall. 4 analysts did not pass the full test. Below 80% of all scores. There is evidence of poor reproducibility between samples and also evidence of analyst results bias due to the volume of sample analysed.

• The Ocean teacher online HAB quiz results suggests a high rate of proficiency. 77% of analysts achieved a score over 90% (Proficient). Another 21% of analysts above 80% and 2% need improvement.

• There was a reasonably good consensus among analysts on species identification on questions Q1-Q4. However, analysts found it difficult to give an answer to genus level Even though answers were not used for the final mark.

• There were no real problems with numerical questions (Q5-Q11). 98.72% answered within the model answer given. ±1 cell tolerance was allowed in some answers. There are small differences caused by interpretation of what a viable cell is; Q5 an empty theca was counted. In Q11 opinion was divided: a cell only half visible on one side of the image gave a 70:30 counted in:out ratio. There is consensus among analysts on approach to enumeration, but small differences can mean large differences overall in sample cell counts.

• Questions 12 to 16 were 'short answer' type questions using videos for the identification of species. Some spelling mistakes and not following instructions properly meant some analysts lost marks here. Q16 caused technical problems to some analysts. Q16 also turned out to be the most difficult question in the quiz: identified correctly by 60% only. 30% identified incorrectly, 10% was not able to answer it.

• The questions Q17-18 on the taxonomical characters of *Pseudo-nitzschia* found that only 81% knows the difference between valve view and girdle view of these species when shown in an image. 7-8% confuses the stria and the interstria in *Pseudo-nitzschia*.

• The questions Q19-20 on the taxonomical characters of *Protoperidinium* showed that there are no problems with kofoidean tabulation of armoured dinoflagellates with mostly near perfect scores. All *Protoperidinium* marks were over 90%.

• Q21 to Q27 on *Protoperidinium* species identification were answered well. In Q21 *P.depressum* was easy to identify because of its distinctive large size. Q22 *P.conicum* differs from *P.leonis* on typical 'V' shape and spines, they can be confused as both are ortho-hexa. Q23 *P.divergens* caused most problems. This is confused with *P.crassipes* (13%) as both are meta-quadra, but diverging horns and horns in *P.crassipes* differ. Q24 *P.leonis* as above. Q25 & 27 are very distinctive if unusual *Protoperidinium* species. Q26 *P.pentagonum* another ortho-hexa like *P.leonis* and *P.conicum* but with a really wide sulcal area between horns.

2. Introduction

The Phytoplankton Bequalm intercomparison study in 2015 was designed to test the ability of analysts to identify and enumerate correctly marine phytoplankton species in lugol's preserved water samples. As in previous years, samples have been spiked using laboratory cultures. There were nine species of interest in this intercomparison exercise. These were: *Scrippsiella trochoidea* (Stein) Loeblich III, *Prorocentrum micans* Ehrenberg, *Pseudo-nitzschia australis* Frenguelli, *Lingulodinium polyedrum* (F.Stein) J.D.Dodge, *Paralia sulcata* (Ehrenberg) Cleve, *Dytilum brightwellii* (T.West) Grunow, *Guinardia delicatula* (Cleve) Hasle, *Coscinodiscus granii* Gough and *Asterionellopsis glacialis* (Castracane) Round.

Collaboration between the Marine Institute in Ireland and the IOC UNESCO Centre for Science and Communication of Harmful algae in Denmark on the Bequalm intercomparison exercise commenced in 2011. This collaboration involves the use of algal cultures from the Scandinavian Culture Collection of Algae and Protozoa in Copenhagen, cultures isolated from field samples and from the Marine Institute culture collection. This collaboration also includes the elaboration of a marine phytoplankton taxonomy quiz using an online platform called 'Ocean Teacher'. This online HAB quiz was designed by Jacob Larsen (IOC) and Rafael Salas (MI).

This year, 89 analysts from 49 laboratories took part in this intercomparison exercise. 84 analysts returned sample results and 81 completed the online Hab quiz. There were 68 participants from laboratories across Europe, 18 from South America, 2 in Australia and 1 in Asia. The list of participating laboratories can be found in Annex V and a breakdown of participation from each country in figure 1 below.

This intercomparison exercise has been coded in accordance with defined protocols in the Marine Institute, for the purposes of quality traceability and auditing. The code assigned to the current study is PHY-ICN-15-MI1. PHY standing for phytoplankton, ICN for intercomparison, 15 refers to the year 2015, MI refers to the Marine Institute and 1 is a sequential number of intercomparisons for the year. So, 1 indicates the first intercomparison for the year 2015.

Also, as part of this intercomparison exercise, a training workshop is held annually to discuss the results of the intercomparison exercise and to provide training in some areas of interest on phytoplankton taxonomy to the participants. This workshop has been held in various places over the years and it has taken the format of a 3 days training workshop with at least 2 days dedicated to lectures on algal groups in rooms equipped with microscopes and using live cultures (see workshop agenda: Annex IV).

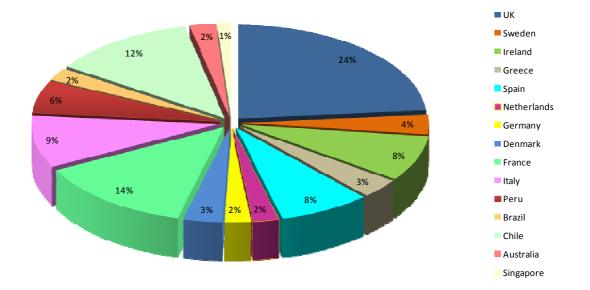


Figure 1: Breakdown participation per country of the Phytoplankton intercomparison exercise Bequalm 2015

This workshop has become an important forum for scientists working on phytoplankton monitoring programmes from around the world to convene and be able to discuss taxonomical matters related to monitoring, new advances and finds, taxonomical nomenclature changes, looking at samples from different geographical areas and listen to relevant stories from other laboratories about issues with harmful algal events in their regions of relevant ecological importance.

3. Materials and Methods

3.1 Sample preparation, homogenization and spiking

All samples were prepared following this protocol: The seawater used in this experiment was natural field water collected at Ballyvaughan pier, Galway bay, Ireland, filtered through 47mm GF/C Whatmann filters (Whatmann[™], Kent, UK), autoclaved (Systec V100, Wettenberg , Germany) and preserved using Lugol's iodine solution (Clin-tech, Dublin, Ireland). The centrifuge tubes were made up to the required volume with sterile filtered seawater containing neutral lugol's iodine. This was carried out using 25ml serological pipettes (Sardstedt, Nümbrech, Germany) and the volume weighted in a calibrated balance (ME414S Sartorius, AG Gottingen, Germany). The density of seawater was considered for this purpose to be 1.025g/ml. The final volume of each sample was 45 ml approximately before spiking the samples.

A stock solution for each of the nine species was prepared using 50ml glass screw top bottles (Duran®, Mainz, Germany). Then, a working stock containing the nine species to the required cell concentration was

prepared using a measured aliquot from each stock solution into a 2l Schott glass bottle. Then, each working stock was inverted 100 times to homogenate the samples and 5ml aliquots were pipetted out after each 100 times inversion using a calibrated 5ml pipette (Gilson, Middleton, USA) with 1-10ml pipette tips (Eppendorf, Cambridge, UK). The 5ml aliquots were dispensed into the 50ml centrifuge tubes (Sardstedt, Nümbrech, Germany) containing 45ml.

Samples were capped and labeled. Parafilm was used around the neck of the centrifuge tube to avoid water loss through evaporation or leaking, placed in padded envelopes and couriered via TNT or DHL couriers for a one day delivery across the world, in order for all the laboratories to have approximately the same arrival time.

3.2 Culture material, treatments and replicates.

The laboratory cultures used in this exercise were collected in Galway bay, Bantry bay and Carlingford Lough during the months of February and May 2015. All the cultures were isolated using the micro-pipette technique as unialgal cultures. Most species were identified through light microscopy techniques using an inverted microscope Olympus IX-51 except for *Pseudo-nitzschia australis* which was confirmed to species level using qPCR species specific gene probes.

A total of 500 samples were produced for the enumeration and identification study. Each participant was sent a set of four samples, three for analysis and one spare sample that is a total of 356 samples to 39 laboratories. Another 15 samples were sent to an expert laboratory to carry out the homogeneity and stability test. The data generated by this laboratory was used to test the homogeneity and stability of the samples. A minimum of 10 samples (50ml volume) were necessary for the homogeneity test and a minimum of 3 samples for the stability test. Samples had to be divided in two portions of 25ml each.

A time delay between the homogeneity test and the stability test is required. ISO 13528 indicates that this delay should be similar to that experienced by the participants in the test. As analysts have a month to return results from sample receipt, it was decided that this time delayed should be of one month as well.

3.3 Cell concentrations

Preliminary cell counts from the original stock solutions were made to establish the cell concentration of each species and this was carried out using a glass Sedgewick-Rafter cell counting chamber (Pyser-SGI, Kent, UK) to ascertain an approximation of the cell concentration of each species in the samples.

Generally cell concentrations were low to medium and ranging from concentrations of 2000 cells/Litre for *C.granii*, 4000 cells/L for *P.australis*, 5000 cells/L for *D.brightwellii*, 7500cells/L for *L.polyedrum*, 10000 cells/L for *G.delicatula* and 15000 cells/L for *P.micans* and 30000 cells/L for *Scrippsiella*.

3.4 Sample randomization

All samples were allocated randomly to the participants using Minitab® Statistical Software Vr16.0 randomization tool.

3.5 Forms and instructions

A set of instructions and forms required were sent via e-mail to all the analysts to complete the exercise including their unique identifiable laboratory and analyst code. Form 1 (Annex I) to confirm the receipt of materials; number and condition of samples and correct sample code. Form 2 (Annex II) in an Excel spreadsheet format to input species composition and calculate abundance for each species. Form 2 was used for the identification and enumeration part of the exercise. All analysts were asked to read and follow the instructions (Annex III) before commencing the test.

At the end of the exercise and with the publication of this report, analysts will be issued with a statement of performance certificate (See Annex VI) which is tailored specifically for each test. This is an important document for auditing purposes and ongoing competency.

3.6 Statistical analysis

Statistical analysis was carried out using PROlab Plus version 2.14, dedicated software for the statistical analysis of intercalibration and proficiency testing exercises from Quodata, Minitab® Statistical Software Vr16.0 and Microsoft office Excel 2007.

We followed the standard ISO normative 13528 which describes the statistical methods to be used in proficiency testing by interlaboratory comparisons. Here, we use this standard to determine and assess the homogeneity and stability of the samples, what to do with outliers, determining assigned values and calculating their standard uncertainty. Comparing these values with their standard uncertainty and calculating the performance statistics for the test through graphical representation and the combination of performance scores.

The statistical analysis of the data and final scores generated from this exercise has been carried out using the consensus values from the participants. The main difference with previous years is that by using ISO13528, the consensus values from the participants must undergo several transformations before they can be used to generate Z-scores.

The main transformation is the use of iteration to arrive at robust averages and standard deviations for each test item. This process allows for outliers and missing values to be dealt with, and it also allows for the heterogeneity of the samples to be taken into consideration when calculating these values.

3.7 Bequalm online HAB quiz

The online HAB quiz was organized and set up by Jacob Larsen (IOC UNESCO, Centre for Science and Communication on Harmful Algae, Denmark) and Rafael Salas (Marine Institute, Ireland). The exercise was prepared in the web platform 'Ocean teacher'. The Ocean teacher training facility is run by the IODE (International Oceanographic Data and information Exchange) office based in Oostende, Belgium. The IODE and IOC organize some collaborative activities among them, the IOC training courses on toxic algae and the Bequalm online HAB quiz. The online quiz uses the open source software Moodle Vr2.0 (https://moodle.org).

First time participants had to register in the following web address: <u>http://classroom.oceanteacher.org/</u> before allowed to access the quiz content, while analysts already registered from previous years, could go directly to the login page. Once registered, participants could login into the site and using a password, able to access the quiz. Twelve weeks were given to analysts to register, complete and submit the online quiz. The course itself was found under the courses tab in the main menu page. Analysts could link to the Harmful Algal Bloom programme BEQUALM 2015 and quiz content from here.

The test itself consisted of 27 questions (see Annex XVI). There were different question types used in this quiz; Eassy type Q1-4, Numerical Q5-11, Short answer videos Q12-16, Matching Q17-20 and Multiple choice Q21-27. In essay type questions analysts can write their answers and any comments in the box provided, matching questions have dropdown menus including an array of answers which analysts must choose from, numerical questions need numerical values as answers and in short answer type questions analysts must match the correct answer given by the organizers in terms of the correct identification and also must be grammatically sound. All questions have equal value and the quiz have a maximum grade of 100% for a perfect score.

The online quiz can only be submitted once. After that, no changes can be made. However, analysts can login and out as many times as they wish throughout the period of time allocated and changes to the quiz can be saved and accessed at a later stage, so the quiz doesn't have to be completed in one sitting.

4. Results

4.1 Homogeneity and stability study

The procedure for a homogeneity and stability test is recorded in annex b (pg 60) of ISO13528. The assessment criteria for suitability, is also explained here. See Annex VII to see all the results from the homogeneity and stability test for each measurand.

The calculations have been carried out using ProLab Plus version 2.14 and the reports for homogeneity and stability are given separately for each measurand. The top of the report gives you information on the measurand, mean and analytical standard deviation for the homogeneity analysis and the homogeneity and stability mean comparison in the stability analysis. The reports also show the target standard deviation for each measurand which in this case was calculated manually using the consensus results of the participants and taking into consideration the heterogeneity of the samples as will be explained later.

The middle part of the report gives you the results of the different tests. ProLab Plus calculates whether the data has passed the criteria for the F-test, ISO13528 and the harmonized protocol. The bottom part of the report is the actual graphical representation of the sample results as box plots. The homogeneity test shows the 10 samples analysed for this test and calculates the heterogeneity standard deviation (SD between samples) and the analytical standard deviation (SD within samples). The stability test graph show the 10 samples of the homogeneity test plus the 3 samples of the stability test, thirteen in total and compare their mean values. This is done for each measurand.

ISO13528	F-test	Homogeneity test ISO 13528	Homogeneity Harmonized protocol	Stability test 13528	Stability harmonized protocol
Scrippsiella trochoidea	Pass	Pass	Pass	Pass	Pass
Prorocentrum micans	Pass	Pass	Pass	Pass	Pass
Pseudo-nitzschia australis	Pass	Fail	Fail	Pass	Pass
Lingulodinium polyedrum	Pass	Pass	Fail	Pass	Pass
Dytilum brightwellii	Pass	Fail	Pass	Pass	Pass
Coscinodiscus granii	Pass	Fail	Fail	Fail	Pass
Guinardia delicatula	Pass	Fail	Fail	Pass	Pass

Table 1: Homogeneity and stability pass/fail test

Table 1 above shows the pass/fail flag for each measurand. All measurands passed the F-test but not all passed ISO13528 or the Harmonised protocol. The homogeneity test according to ISO 13528 was passed for 3 of the measurands (S.trochoidea, P. micans , L. polyedrum) and failed 4 (P.australis, D.brightwellii G.delicatula and C.granii). The stability test passed 6 of the 7 measurands but failed C.granii. All measurands passed the stability test according to the harmonized protocol.

According to ISO13528, if the homogeneity test fails, the heterogeneity standard deviation has to be taken into account when calculating the standard deviation for the measurand. The consensus values new heterogeneity standard deviation (STD) was used for all measurands regardless of the Pass/Fail on the homogeneity test.

4.2 Outliers and missing values

Outliers in the data have been addressed by using the robust analysis as set out in Annex C algorithm A + S of ISO 13528. The robust estimates for this exercise have been derived by iterative calculation, that is, by convergence of the modified data (Annex IX) for each measurand.

In relation to missing values, the standard proposes that participants must report 0.59 n replicate measurements, so in the case of three replicates, at least two replicate results from each measurand must be obtained from each participant for the data to be included in the statistical calculations. If this rule is not fulfilled results from these participants won't be included in the calculation of statistics that affect other laboratories but they may be used for the calculation of their own.

4.3 Analysts' Data

The results of the participants were collated using Excel spreadsheets. 84 analysts from 49 laboratories returned results for this exercise. There were nine measurands in the samples: *Scrippsiella trochoidea* (Stein) Loeblich III, *Prorocentrum micans* Ehrenberg, *Pseudo-nitzschia australis* Frenguelli, *Lingulodinium polyedrum* (F.Stein) J.D.Dodge, *Paralia sulcata* (Ehrenberg) Cleve, *Dytilum brightwellii* (T.West) Grunow, *Guinardia delicatula* (Cleve) Hasle, *Coscinodiscus granii* Gough and *Asterionellopsis glacialis* (Castracane) Round.

The table of results from all participants can be found in Annex VIII at the end of this report. The average of the participant replicate results for each measurand were used to calculate the robust averages and standard deviations first by iteration, which then were used to calculate the confidence limits for the Z-scores (See Annex X).

For the purpose of this exercise we have used the consensus standard deviation from the participants and we have calculated the new standard deviation for each test item by adding the between samples standard deviation from the homogeneity test according to the formula below (A) from ISO13528.

$$\sigma_{r1} = \sqrt{\sigma_r^2 + s_s^2}$$

Where;

(A)

 σ_{r1} = the new SD for the homogeneity test

 σ_r =between samples Standard deviation and

Ss = the robust standard deviation for the test

Table 2 below show the results which are used to generate the confidence limits of this test for each measurand. These values are calculated using the robust analysis using algorithm A +S from annex C of the standard ISO13528. The calculations are generated by iteration and can be found for each measurand in this report in annex IX.

Species	Scrippsiella trochoidea	Prorocentrum micans	Pseudo-nitzschia australis	Lingulodinium polyedrum	Dytilum brightwellii	Coscinodiscus granii	Guinardia delicatula
SD	7146	2914	735	1229	981	209	1826
new SD	7208	2940	1161	1284	1105	252	2035

Table 2: Standard deviations for each measurand based on consensus values (SD) and consensus values plus the between sample standard deviation (new SD) calculated using Excel.

The new standard deviation (new SD) will be used to set the 2 and 3 sigma limits of the robust averages for each test item.

4.4 Assigned value and its standard uncertainty

The assigned values (robust mean and standard deviation) for a test material is calculated as explained before using algorithm A in annex C from the consensus values of the participants (Annex IX). The standard uncertainty of the assigned value can then be calculated using the equation (B) below;

$$u_X = 1,25 \times s^* / \sqrt{p}$$
B)

Where;

 \mathcal{U}_{x} = Standard uncertainty of the assigned value,

 s^* = robust standard deviation for the test

p = number of analysts

	Scrippsiella	P.micans	P. asutralis	L.polyedrum	D.brightwellii	C.granii	G.delicatula	
Robust mean x*	18102	12770	2494	6440	2473	1640	5173	
Robust Stdev s*	7146	2914	735	1229	981	209	1826	
Standard Ux	975	397	100	169	134	29	249	
n=	84	84	84	83	84	84	84	
if Ux < 0.3xSTdev	2144	874	221	369	294	63	548	
then Ux is negligible	neg	neg	neg	neg	neg	neg	neg	
The equation is satisfied	l in all cases							

Table 3: Assigned values and standard uncertainties for the test.

If U_x is less than 0.3 times the standard deviation for the test, then this uncertainty is negligible for the test material. In our case, all our test materials satisfy the equation (Table 3).

4.5 Comparison of the assigned value

When the consensus values from the participants are used to calculate the standard uncertainty of the assigned values, the values can then be compared against a reference value from an expert laboratory. As we don't have a reference value as such, we used the homogeneity test results to compare these values against the values calculated by the participants using equation (C) below:

$$\sqrt{\frac{(1,25s^*)^2}{p} + u_X^2}$$

Where;

 u_x = Standard uncertainty of the assigned value, s^* = robust standard deviation for the test p = number of analysts

	Scrippsiella	P.micans	P. asutralis	L.polyedrum	D.brightwellii	C.granii	G.delicatula
Robust mean x*	18102	12770	2494	6440	2473	1640	5173
Robust Stdev s*	7146	2914	735	1229	981	209	1826
Standard Ux	975	397	100	169	134	29	249
n=	84	84	84	83	84	84	84
if Ux < 0.3xSTdev	2144	874	221	369	294	63	548
then Ux is negligible	neg	neg	neg	neg	neg	neg	neg
The equation is satisfied	in all cases						
Cumulative distribution	function cut off	points for	normal dist	ribution			
x *-1.5s*	7383	8399	1392	4597	1002	1327	2434
x *+1.5s*	28821	17141	3597	8284	3945	1954	7912
Homogeneity test	Scrippsiella	P.micans	P. asutralis	L.polyedrum	D.brightwellii	C.granii	G.delicatula
Reference value mean	32133	15726	3980	7524	5342	1804	10038
Reference value stdev	1246	614	1150	709	632	253	1240
	Comparison wit	h assigned	d value				
	Scrippsiella	P.micans	P. asutralis	L.polyedrum	D.brightwellii	C.granii	G.delicatula
x *-X	14031	2956	1486	1084	2869	164	4865
			4.42	238	189	40	352
Uncertainty of diff.	1378	562	142	250	105	40	552

Table 4: Comparison of the assigned value.

ISO13528 says that if the difference between the consensus values and the reference values (homogeneity test values in our case) is more than twice its uncertainty, then possible reasons need to be sought regarding bias. In our comparison, none of the cell counts satisfy the equation (Table 4).

4.6 Calculation of performance statistics

The performance statistics for the exercise have been calculated using ProLab Plus software version 2.14. The summary table of all the Z-scores can be found in Annex X of this report. The summary of laboratory means and statistical parameters (Annex XI) show the results by measurand and analyst of all the results for the test including the Z-scores and outliers, the statistical method used for the data (Q Huber), means and standard deviations, measures of repeatability and reproducibility for each measurand, number of participants and other relevant information on the test. The graphical summary for each measurand by analyst can be found in Annex XII of this report.

4.6.1 Z-scores

The z-scores derived using the robust averages and standard deviations can be found in annex X. Any results in blue are within the specification of the test (2SD). The yellow triangles indicate warning signals and red triangles indicate action signals.

There were eighteen warning (yellow) and four action (red) signals. The four red signals correspond to analysts 11 and 8 for *L.polyedrum* cell counts and analysts 6 and 75 for *C.granii* cell counts. The warning signals correspond to analyst 22 for *C.granii* cell counts, analysts 20, 33, 45, 68 and 79 on *S.trochoidea* counts, analyst 42 on *P.australis* counts, analysts 20, 26, 32, 4, 53, 6 and 67 on *L.polyedrum* cell counts, analysts 8, 54 and 32 on *P.micans* counts and analyst 60 on *G.delicatula* counts.

Overall, all analysts passed the test except for four analysts which failed two counts out of seven each and are below the 80% of results necessary to pass the test. Analysts 20 and 32 have two warning signals each and analysts 6 and 8 have one action and one warning signal each. This has to be seen within the contest of performance over several rounds, while improvement is necessary it is also important to remark that these four analysts were participating in the scheme for the first time.

4.7 Combined performance scores

Mandel's h and k statistic present measures for graphically surveying the consistency of the data for all measurands in the test (Annex XIII). Mandel's h statistics determines the differences between the mean values of all the laboratories and measurand combinations and it may point out at particular patterns for specific laboratories. In this graph, laboratories may have positive or negative values. Laboratories with large all-positive values or all-negative values for all measurands may indicate laboratory bias. The k statistics only produce positive results, zero is the baseline and it looks at repeatability precision between measurands. Generally analysts with larger values tend to have poorer repeatability precision between replicates than the consensus mean values.

4.7.1 Relative Laboratory Performance (RLP) and Rescaled Sum of Z-scores (RSZ)

The chart of RLP against RSZ (Annex XIV) for all measurands combined shows systematic laboratory bias. Laboratories dotted within the green colored area in the graph are within the consensus values shown by the analysts. Those outside it are showing a systematic bias towards over or under-estimating their counts in the samples, suggesting some kind of methodology bias.

4.7.2 Plots of repeatability standard deviation

The plots of repeatability standard deviations are used to identify analysts whose average and standard deviations are unusual from the consensus. They assume that the data is normally distributed and the null hypothesis is that there are no differences between the analyst means and standard deviations using the van Nuland circle technique (Annex XV) for each measurand. The graphs show poor repeatability for the

Scrippsiella cell counts. There is good correlation however in all the other measurand counts for most analysts.

4.8 Qualitative data

Table 5 below shows what species did analysts identified in the samples. Analysts were asked to give their answers to species level but for the purpose of the exercise and final marks, it was only necessary an answer to genus level. However, by allowing the participants to identify the measurands to species level we obtain more information on decision making by analysts on identification and whether there are particular patterns of thinking or teaching between laboratories in different geographical areas.

The dinoflagellates were identified correctly by most analysts. *L.polyedrum* (96%) was the only organism not identified by an analyst and mis-identified as *Protoceratium reticulatum* by two others. *Prorocentrum (99%)* and *Scrippsiella (96%)* were identified correctly by most analysts. 3 analysts identified *Pentapharsodinium* instead of *Scrippsiella* and these results are given as correct here. There are not real differences between *Scrippsiella*, *Pentapharsodiniun* and *Ensiculifera* genera at the light microscopy level and therefore it is impossible to tell them apart unless scanning electron microscopy or other tools are used to identify these closely related species. The reason most analysts used *Scrippsiella* here is that it is the better known of the three genera. *Prorocentrum* was identified correctly to genus by all analysts although one analyst did incorrectly identify the wrong species.

The diatoms were also identified fine by the analysts. Perhaps the hardest to identify to genus was *Coscinodiscus (96%)* which was identified as *Actynocyclus* by 2 analysts. *Ditylum (100%)* returned perfect scores to species level, The synonym *Rhizosolenia* was used by 5 analyst on the identification of *Guinardia*, 87% to species level and *Pseudo-nitzschia (100%)* was correctly identified by all to genus level. Most analysts 67% did not go further with their identification and left it as *P.seriata* complex but those that did, reckoned it was either *P.australis (14%)* or *P.seriata (14%)*. The right answer was *P.australis* based on rdna sequence data and qPCR species specific probes assay, but both these two species are quite similar, so analysts were really close to the correct species identification of the species based only in light microscopy observation.

Species id	Number	%	Species id	Number	%
Scrippsiella trochoidea	43	51	Prorocentrum micans	83	99
Scrippsiella sp.	38	45	Prorocentrum lima	1	1
Pentapharsodinium sp.	1	1			
Pentapharsodinium daleii	2	2			
Species id	Number	%	Species id	Number	%
P.seriata complex	56	67	L.polyedrum	81	96
P.australis	12	14	P.reticulatum	2	2
P.seriata	12	14	Notidentified	1	1
P.pungens	3	4			
P.multiseries	1	1			
Species id	Number	%	Species id	Number	%
C.granii	80	95	D.brightwellii	84	100
C.wailesii	1	1			
Actynocyclus sp.	2	2			
C. Concinnus	1	1			
			Species id	Number	%
			G.delicatula	68	81
			Guinardia sp.	11	13
			Rhizosolenia delicatula	5	6

Table 5: Qualitative data by measurand

4.9 Ocean Teacher online HAB quiz

The online HAB quiz consisted of 27 questions; annex XVI shows the questions and right answers for the online HAB quiz and annex XVII show the final grades. 81 of the 89 analysts submitted this quiz but not all the analysts responded to all the questions. Questions 1 to 4 were essay type questions and no marks were given for these as there is no right answer to them. These questions were 4 sets of 3 images per set per question. Each image showed an organism regularly found in water samples and we asked analysts to identify to genus level only based on the image. Each image had a scale bar for each photograph to aid the identification. Here, we were looking for some sort of consensus answers based on not enough information. Tables 6 show the actual response given to questions 1 to 4 by analysts the count of analysts that gave that particular answer and the frequency as a percentage of that answer.

Frequency (%	Count	Actual response	Q3	Frequency (%)	Count	Actual response	Q1
8	80	Protoperidinium	3.1	57.3	47	Helicostomella	1.1
10				12.2	10	Tintinnid	
77.	62	Detonula	3.2	8.5	7	Parundella	
12.	10	Lauderia		6.1	5	Parafavella/favella	
7.	6	Thalassiosira		3.7	3	Rhabdonella	
1.	1	Melosira		3.7	3	Amphora/amphorella	
1.	1	Lithodesmium		2.4	2	Rhizosolenia	
10	80			2.4	2	Dinobryon	
98.	78	Protoperidinium	3.3	1.2	1	Ciliate	
1.	1	Gonyaulax		1.2	1	Salpingella	
10	79			1.2	1	Xystonella	
Frequency (%	Count	Actual response	Q4	100.0	82		
55.	45	Rhabdonema	4.1	89.5	68	Navicula/Lyrella/Fallacia	1.2
29.	24	Striatella		3.9	3	Amphora	
12.	10	Fragillaria		3.9	3	Diploneis	
1.	1	Fragillariopsis		1.3	1	Delphineis	
1.	1	Tabellaria		1.3	1	Bacillariales	
10	81			100.0	76		
43.	34	Navicula	4.2	75.0	60	Guinardia	1.3
15.	12	Pinnularia		15.0	12	Leptocylindrus	
7.	6	Entomoneis		5.0	4	Pseudo-guinardia	
7.	6	Trachyneis		2.5	2	Cerataulina	
7.	6	Plagiotropis		2.5	2	dactiliosolen	
3.	3	Nitzschia		100.0	80		
3.	3	Amphora		Frequency (%)	Count	Actual response	Q2
3.	3	Diploneis		82.3	65	Alexandrium	2.1
2.	2	Amphiprora		6.3	5	Gonyaulax	
1.	1	Tropidoneis		2.5	2	Heterocapsa	
1.	1	Scoliotropis		2.5	2	Lingulodinium	
1.	1	Thalassiosira		1.3	1	Peridinium	
10	78			1.3	1	Gymnodinium	
56.	46	Tintinnopsis	4.3	1.3	1	Protoperidinium	
18.	15	Tintinnid		1.3	1	Scrippsiella	
9.	8	Favella		1.3	1	Dino thecate	
2.	2	Parafavella		100	79		
2.	2	Acanthostomella		97.5	78	Navicula	2.2
1.	1	Syracosphaera		1.3	1	Bacillariales	
1.	1	Stenosomella		1.3	1	Mastogloia	
1.	1	Epiplocylis		100	80		
1.	1	Coxliella		66.7	2	Gonyaulax	2.3
1.	1	ciliate		33.3	1	Protoperidinium	
1.	- 1	Rhizosolenia		100	3		
1.	1	Undella					
1.	1	Epiplocilys					

Table 6: Questions 1-4 answers

Questions 5 to 11 (Table 7) were all numerical questions. Analysts were presented with images of different organisms and they were asked to count the number of cells depicted in the images. A model response was built into the answer by the organizers and expected the consensus answer to be similar. A tolerance of + or -1 cell was also built in around the model response for some of the questions. Only 8 answers in total on the 7 questions were answered outside the specified parameters.

Q5	Model response	Actual response	Partial credit	Count	Frequency
	2 (22)	2	100.00%	76	93.83%
	[Did not match any answer]	1	0.00%	3	3.70%
	[Did not match any answer]	3	0.00%	2	2.47%
	[No response]		0.00%	0	0.00%
Q 6	Model response	Actual response	Partial credit	Count	Frequency
	26 (2527)	25	100.00%	4	4.94%
	26 (2527)	26	100.00%	76	93.83%
	[Did not match any answer]	16	0.00%	1	1.23%
	[No response]		0.00%	0	0.00%
Q7	Model response	Actual response	Partial credit	Count	Frequency
	8 (79)	7	100.00%	1	1.23%
	8 (79)	8	100.00%	80	98.77%
	[Did not match any answer]		0.00%	0	0.00%
	[No response]		0.00%	0	0.00%
Q8	Model response	Actual response	Partial credit	Count	Frequency
	5 (55)	5	100.00%	79	97.53%
	[Did not match any answer]	4	0.00%	1	1.23%
	[Did not match any answer]	6	0.00%	1	1.23%
	[No response]		0.00%	0	0.00%
Q9	Model response	Actual response	Partial credit	Count	Frequency
	29 (2830)	29	100.00%	81	100.00%
	[Did not match any answer]		0.00%	0	0.00%
	[No response]		0.00%	0	0.00%
Q10	Model response	Actual response	Partial credit	Count	Frequency
	4 (44)	4	100.00%	81	100.00%
	[Did not match any answer]		0.00%	0	0.00%
	[No response]		0.00%	0	0.00%
Q11	Model response	Actual response	Partial credit	Count	Frequency
	9 (810)	8,5	100.00%	1	1.23%
	9 (810)	8	100.00%	25	30.86%
	9 (810)	9	100.00%	55	67.90%
	[Did not match any answer]		0.00%	0	0.00%
	[No response]		0.00%	0	0.00%

Table 7: QuestionS 5-11 model response table.

Q12	Model response	Actual response	Partial credit	Count	Frequency
	Dinophysis	Dinophysis	100.00%	75	92.59%
	[Did not match any answer]	Dinophysis acuta	0.00%	3	3.70%
	Dinophysis	DInophysis	100.00%	1	1.23%
	[Did not match any answer]	Amylax	0.00%	1	1.23%
	[Did not match any answer]	Dinopjysis	0.00%	1	1.23%
	[No response]		0.00%	0	0.00%
Q13	Model response	Actual response	Partial credit	Count	Frequency
	Gyrodinium	Gyrodinium	100.00%	77	95.06%
	[Did not match any answer]	Gyrodinium spirale	0.00%	2	2.47%
	[Did not match any answer]	Gymnodinium	0.00%	1	1.23%
	[Did not match any answer]	Eutreptia	0.00%	1	1.23%
	[No response]		0.00%	0	0.00%
Q14	Model response	Actual response	Partial credit	Count	Frequency
	Bacillaria	Bacillaria	100.00%	71	87.65%
	[Did not match any answer]	Pseudo-nitzschia	0.00%	3	3.70%
	[Did not match any answer]	Bacillaria paxillifera	0.00%	2	2.47%
	[Did not match any answer]	Bacillaria.	0.00%	1	1.23%
	[Did not match any answer]	Baccilaria	0.00%	1	1.23%
	[Did not match any answer]	Pseudonitzschia	0.00%	1	1.23%
	[Did not match any answer]	Fragilaria	0.00%	1	1.23%
	[Did not match any answer]	Bacteriastrum	0.00%	1	1.23%
	[No response]		0.00%	0	0.00%
Q15	Model response	Actual response	Partial credit	Count	Frequency
	Heterosigma	Heterosigma	100.00%	70	86.42%
	[Did not match any answer]	Heterosigma akas	0.00%	2	2.47%
	[Did not match any answer]	Karenia	0.00%		
	[Did not match any answer]	Kalellia	0.00%	2	2.47%
	[Did not match any answer]	Gymnodinium	0.00%		2.47% 1.23%
	· · · ·			1	
	[Did not match any answer]	Gymnodinium	0.00% 0.00%	1	1.23%
	[Did not match any answer] [Did not match any answer]	Gymnodinium Rhodomonas Dinophyceae atheo Amphidinium	0.00% 0.00% 0.00% 0.00%	1 1 1 1	1.23% 1.23% 1.23% 1.23%
	[Did not match any answer] [Did not match any answer] [Did not match any answer] [Did not match any answer] [Did not match any answer]	Gymnodinium Rhodomonas Dinophyceae athe Amphidinium Lepidodinium	0.00% 0.00% 0.00%	1 1 1 1	1.23% 1.23% 1.23%
	[Did not match any answer] [Did not match any answer] [Did not match any answer] [Did not match any answer]	Gymnodinium Rhodomonas Dinophyceae atheo Amphidinium Lepidodinium Olisthodiscus	0.00% 0.00% 0.00% 0.00%	1 1 1 1	1.23% 1.23% 1.23% 1.23%
	 [Did not match any answer] 	Gymnodinium Rhodomonas Dinophyceae athe Amphidinium Lepidodinium	0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	1 1 1 1 1 1 1	1.23% 1.23% 1.23% 1.23% 1.23% 1.23% 1.23%
	[Did not match any answer] [Did not match any answer]	Gymnodinium Rhodomonas Dinophyceae atheo Amphidinium Lepidodinium Olisthodiscus Karlodinium	0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	1 1 1 1 1 1 1 1 0	1.23% 1.23% 1.23% 1.23% 1.23% 1.23% 1.23% 0.00%
Q16	 [Did not match any answer] 	Gymnodinium Rhodomonas Dinophyceae atheo Amphidinium Lepidodinium Olisthodiscus Karlodinium	0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	1 1 1 1 1 1 1 1 0	1.23% 1.23% 1.23% 1.23% 1.23% 1.23% 1.23% 0.00%
Q16	[Did not match any answer] [D	Gymnodinium Rhodomonas Dinophyceae atheo Amphidinium Lepidodinium Olisthodiscus Karlodinium Actual response Oblea	0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% Partial credit 100.00%	1 1 1 1 1 1 1 0 Count	1.23% 1.23% 1.23% 1.23% 1.23% 1.23% 1.23% 0.00%
Q16	[Did not match any answer] [No response] Model response Oblea Diplopsalis	Gymnodinium Rhodomonas Dinophyceae ather Amphidinium Lepidodinium Olisthodiscus Karlodinium Actual response Oblea Diplopsalis	0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% Partial credit 100.00%	1 1 1 1 1 1 1 0 Count 27 20	1.23% 1.23% 1.23% 1.23% 1.23% 1.23% 1.23% 0.00% Frequency 33.33% 24.69%
Q16	[Did not match any answer]	Gymnodinium Rhodomonas Dinophyceae atheo Amphidinium Lepidodinium Olisthodiscus Karlodinium Actual response Oblea Diplopsalis Protoperidinium	0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% Partial credit 100.00% 100.00%	1 1 1 1 1 1 1 0 Count 27 20 13	1.23% 1.23% 1.23% 1.23% 1.23% 1.23% 1.23% 0.00% Frequency 33.33% 24.69% 16.05%
Q16	[Did not match any answer] [No response] Model response Oblea Diplopsalis [Did not match any answer] [Did not match any answer] [Did not match any answer]	Gymnodinium Rhodomonas Dinophyceae atheo Amphidinium Lepidodinium Olisthodiscus Karlodinium Actual response Oblea Diplopsalis Protoperidinium Alexandrium	0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% Partial credit 100.00% 100.00%	1 1 1 1 1 1 1 0 Count 27 20 13	1.23% 1.23% 1.23% 1.23% 1.23% 1.23% 1.23% 0.00% Frequency 33.33% 24.69%
Q16	[Did not match any answer]	Gymnodinium Rhodomonas Dinophyceae atheo Amphidinium Lepidodinium Olisthodiscus Karlodinium Actual response Oblea Diplopsalis Protoperidinium Alexandrium Technical problem	0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% Partial credit 100.00% 100.00% 0.00%	1 1 1 1 1 1 1 0 Count 27 20 13 12	1.23% 1.23% 1.23% 1.23% 1.23% 1.23% 1.23% 0.00% Frequency 33.33% 24.69% 16.05%
Q16	[Did not match any answer] [No response] Model response Oblea Diplopsalis [Did not match any answer] [Did not match any answer] [Did not match any answer]	Gymnodinium Rhodomonas Dinophyceae atheo Amphidinium Lepidodinium Olisthodiscus Karlodinium Actual response Oblea Diplopsalis Protoperidinium Alexandrium	0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% Partial credit 100.00% 100.00% 0.00%	1 1 1 1 1 1 1 0 Count 27 20 13 12 5 1	1.23% 1.23% 1.23% 1.23% 1.23% 1.23% 1.23% 0.00% Frequency 33.33% 24.69% 16.05% 14.81% 6.15% 1.23%
Q16	[Did not match any answer]	Gymnodinium Rhodomonas Dinophyceae atheo Amphidinium Lepidodinium Olisthodiscus Karlodinium Actual response Oblea Diplopsalis Protoperidinium Alexandrium Technical problem Alexandrium oster Herdmania	0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% Partial credit 100.00% 100.00% 0.00%	1 1 1 1 1 1 1 0 Count 27 20 13 12 5 1 1	1.23% 1.23% 1.23% 1.23% 1.23% 1.23% 1.23% 0.00% Frequency 33.33% 24.69% 16.05% 14.81% 6.15% 1.23%
Q16	[Did not match any answer]	Gymnodinium Rhodomonas Dinophyceae atheo Amphidinium Lepidodinium Olisthodiscus Karlodinium Actual response Oblea Diplopsalis Protoperidinium Alexandrium Alexandrium oster	0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% Partial credit 100.00% 100.00% 0.00% 0.00% 0.00%	1 1 1 1 1 1 1 1 0 Count 27 20 13 12 5 1 1 1 1 1	1.23% 1.23% 1.23% 1.23% 1.23% 1.23% 1.23% 0.00% Frequency 33.33% 24.69% 16.05% 14.81% 6.15% 1.23%

Table 8. Model responses to numerical questions 12-16

Questions 12-16 were short answer type questions and participants were ask to write the genus name of the organism featured in the video clip. In Q12, the video feature a cell of *Dinophysis acuta*. 1 analyst did not identify correctly and 2 others made grammar mistakes and were deducted marks for that reason. The rest answered correctly, although 2 analysts identified to species level which was not what was asked of them. This is important as in this type of questions the answer given by the participant has to fully match the answer built into the software by the organizers.

In Q13, the model answer was *Gyrodinium*, 2 analysts did not identify correctly the organism and 2 went to species level, although the answer was given as correct. In Q14, the model answer was *Bacillaria*, 6 analysts did not identify correctly, 2 went to species level and 1 analyst made a grammar mistake. In Q15, the model answer was *Heterosigma*, 9 analysts did not identify correctly and one went to species level. In Q16, the model answer was *Oblea/Diplopsalis/Diplopsalopsis/Diplopelta* and *Boreadinium*, 28 analysts identify incorrectly this organism even though 5 possible correct answers were given in the model response and 5 analysts had technical problems viewing this particular video.

Question 17 to 20 are matching type questions, Q17 and 18 on *Pseudo-nitzschia* terminology. Table 9 & 10 shows the model responses and actual answers by the participants to these questions. In Q17 (table 9), participants were shown 4 images of the chain diatom forming *Pseudo-nitzschia* and they were asked to tell us which images showed the chains in girdle view and which in valve view. Only 81% gave correct answers to figure 4, the only image showing the species in valve view. In Q18 (table 10), participants were asked to name the different taxonomic features of *Pseudo-nitzschia* valves. Most answers were above the 90% correct mark. The highest error rate was found on the answers to stria and interstria. 7-8% of participants mixed these two answers.

Questions 19 and 20 were terminology matching questions on armoured dinoflagellates. Q19 show a schematic drawing of a peridinioid dinoflagellate typical plate pattern and participants were asked to name the plates series (table 11). The results show that participants have no problems with the kofoidean tabulation of armoured dinoflagellates. In Q20 (table 12), participants were asked to identify the typical descriptive features of Protoperidinium species by naming the shapes of the 1 apical plate and the second anterior intercalary plate where most participants score above the 90% mark.

Q17	Part of question	Model response	Actual response	Partial credit	Count	Frequency
	313	Fig. 1: girdle view or valve view: girdle view	girdle view	25.00%	75	92.59%
	313	Fig. 1: girdle view or valve view: valve view	valve view	0.00%	5	6.17%
	313	[No response]	[No response]	0.00%	1	1.23%
	314	Fig. 2: girdle view or valve view: girdle view	girdle view	25.00%	71	87.65%
	314	Fig. 2: girdle view or valve view: valve view	valve view	0.00%	9	11.11%
	314	[No response]	[No response]	0.00%	1	1.23%
	315	Fig. 3. girdle view or valve view: girdle view	girdle view	25.00%	72	88.89%
	315	Fig. 3. girdle view or valve view: valve view	valve view	0.00%	8	9.88%
	315	[No response]	[No response]	0.00%	1	1.23%
	316	Fig. 4. girdle view or valve view: girdle view	girdle view	0.00%	15	18.52%
	316	Fig. 4. girdle view or valve view: valve view	valve view	25.00%	65	80.25%
	316	[No response]	[No response]	0.00%	1	1.23%

Table 9. Model answers for question 17 on the genus Pseudo-nitzschia.

Q18	Part of question	Model response	Actual response	Partial credit	Count	Frequency
	297	Arrow 1 points to: Interstria	Interstria	16.67%	74	91.36%
	297	Arrow 1 points to: Fibula		0.00%	0	0.00%
	297	Arrow 1 points to: Raphe slit		0.00%	0	0.00%
	297	Arrow 1 points to: Stria	Stria	0.00%	6	7.41%
	297	Arrow 1 points to: Poroid		0.00%	0	0.00%
	297	Arrow 1 points to: Central interspace		0.00%	0	0.00%
	297	[No response]	[No response]	0.00%	1	1.23%
	298	Arrow / arrow head 2 points to: Interstria	Interstria	0.00%	2	2.47%
	298	Arrow / arrow head 2 points to: Fibula	Fibula	16.67%	74	91.36%
	298	Arrow / arrow head 2 points to: Raphe slit	Raphe slit	0.00%	2	2.47%
	298	Arrow / arrow head 2 points to: Stria		0.00%	0	0.00%
	298	Arrow / arrow head 2 points to: Poroid		0.00%	0	0.00%
	298	Arrow / arrow head 2 points to: Central interspace	Central interspace	0.00%	2	2.47%
	298	[No response]	[No response]	0.00%	1	1.23%
	299	Arrow / arrow head 3 points to: Interstria		0.00%	0	0.00%
	299	Arrow / arrow head 3 points to: Fibula	Fibula	0.00%	4	4.94%
	299	Arrow / arrow head 3 points to: Raphe slit	Raphe slit	16.67%	73	90.12%
	299	Arrow / arrow head 3 points to: Stria		0.00%	0	0.00%
	299	Arrow / arrow head 3 points to: Poroid	Poroid	0.00%	1	1.23%
		Arrow / arrow head 3 points to: Central interspace	Central interspace	0.00%	2	2.47%
		[No response]	[No response]	0.00%	1	1.23%
		Arrow / arrow head 4 points to: Interstria	Interstria	0.00%		6.17%
		Arrow / arrow head 4 points to: Fibula	Fibula	0.00%		1.23%
		Arrow / arrow head 4 points to: Raphe slit	Raphe slit	0.00%		1.23%
		Arrow / arrow head 4 points to: Stria	Stria	16.67%	73	90.12%
		Arrow / arrow head 4 points to: Poroid		0.00%	0	0.00%
		Arrow / arrow head 4 points to: Central interspace		0.00%		0.00%
		[No response]	[No response]	0.00%		1.23%
		Arrow 5 points to: Interstria		0.00%	-	0.00%
		Arrow 5 points to: Fibula		0.00%		0.00%
		Arrow 5 points to: Raphe slit	Raphe slit	0.00%	-	1.23%
		Arrow 5 points to: Stria	Stria	0.00%		1.23%
		Arrow 5 points to: Poroid	Poroid	16.67%		96.30%
		Arrow 5 points to: Central interspace		0.00%		0.00%
		[No response]	[No response]	0.00%		1.23%
		Arrow head 6 points to: Interstria	[]	0.00%		0.00%
		Arrow head 6 points to: Fibula	Fibula	0.00%		1.23%
		Arrow head 6 points to: Raphe slit	Raphe slit	0.00%		3.70%
		Arrow head 6 points to: Stria		0.00%		0.00%
		Arrow head 6 points to: Stria		0.00%		0.00%
		Arrow head 6 points to: Central interspace	Central interspace			93.83%
		[No response]	[No response]	0.00%		93.83% 1.23%

Table 10. Model responses for question 18 on the genus Pseudo-nitzschia.

Q19	Part of question	Model response	Actual response	Partial credit	Count Frequency
	292	The plates marked 1'-4' indicate: The apical plates	The apical plates	20.00%	77 95.06%
	292	The plates marked 1'-4' indicate: The anterior intercalary plates	The anterior intercalary plates	0.00%	1 1.23%
	292	The plates marked 1'-4' indicate: The precingular plates		0.00%	0 0.00%
	292	The plates marked 1'-4' indicate: The postcingular plates	The postcingular plates	0.00%	2 2.47%
	292	The plates marked 1'-4' indicate: The antapical plates		0.00%	0 0.00%
	292	[No response]	[No response]	0.00%	1 1.23%
	293	The plates marked 1a-3a indicate: The apical plates	The apical plates	0.00%	1 1.23%
	293	The plates marked 1a-3a indicate: The anterior intercalary plates	The anterior intercalary plates	20.00%	78 96.30%
	293	The plates marked 1a-3a indicate: The precingular plates		0.00%	0 0.00%
	293	The plates marked 1a-3a indicate: The postcingular plates		0.00%	0 0.00%
	293	The plates marked 1a-3a indicate: The antapical plates	The antapical plates	0.00%	1 1.23%
	293	[No response]	[No response]	0.00%	1 1.23%
	294	The plates marked 1"-7" indicate: The apical plates	The apical plates	0.00%	1 1.23%
	294	The plates marked 1"-7" indicate: The anterior intercalary plates		0.00%	0 0.00%
	294	The plates marked 1"-7" indicate: The precingular plates	The precingular plates	20.00%	79 97.53%
	294	The plates marked 1"-7" indicate: The postcingular plates		0.00%	0 0.00%
	294	The plates marked 1"-7" indicate: The antapical plates		0.00%	0 0.00%
	294	[No response]	[No response]	0.00%	1 1.23%
	295	The plates marked 1"-5" indicate: The apical plates		0.00%	0 0.00%
	295	The plates marked 1"-5" indicate: The anterior intercalary plates	The anterior intercalary plates	0.00%	1 1.23%
	295	The plates marked 1"-5" indicate: The precingular plates		0.00%	0 0.00%
	295	The plates marked 1"-5" indicate: The postcingular plates	The postcingular plates	20.00%	78 96.30%
	295	The plates marked 1"-5" indicate: The antapical plates	The antapical plates	0.00%	1 1.23%
	295	[No response]	[No response]	0.00%	1 1.23%
	296	The plates marked 1""-2"" indicate: The apical plates	The apical plates	0.00%	2 2.47%
	296	The plates marked 1""-2"" indicate: The anterior intercalary plates		0.00%	0 0.00%
	296	The plates marked 1""-2"" indicate: The precingular plates	The precingular plates	0.00%	1 1.23%
	296	The plates marked 1""-2"" indicate: The postcingular plates		0.00%	0 0.00%
	296	The plates marked 1""-2"" indicate: The antapical plates	The antapical plates	20.00%	77 95.06%
	296	[No response]	[No response]	0.00%	1 1.23%

Table 11. Model answers for question 19 on Protoperidinium

Q20	Part of question	Model response	Actual response	Partial credit	Count	Frequency
	303	Fig.1 shows: 1' ortho configuration	1' ortho configuration	16.67%	79	97.53%
	303	Fig.1 shows: 1' meta configuration		0.00%	0	0.00%
	303	Fig.1 shows: 1' para configuration	1' para configuration	0.00%	1	1.23%
	303	Fig.1 shows: 2a quadra configuration		0.00%	0	0.00%
	303	Fig.1 shows: 2a hexa configuration		0.00%	0	0.00%
	303	Fig.1 shows: 2a penta configuration		0.00%	0	0.00%
	303	[No response]	[No response]	0.00%	1	1.23%
	304	Fig2 shows: 1' ortho configuration		0.00%	0	0.00%
	304	Fig2 shows: 1' meta configuration	1' meta configuration	16.67%	78	96.30%
	304	Fig2 shows: 1' para configuration	1' para configuration	0.00%	1	1.23%
	304	Fig2 shows: 2a quadra configuration		0.00%	0	0.00%
	304	Fig2 shows: 2a hexa configuration	2a hexa configuration	0.00%	1	1.23%
	304	Fig2 shows: 2a penta configuration		0.00%	0	0.00%
	304	[No response]	[No response]	0.00%	1	1.23%
	305	Fig.3 shows: 1' ortho configuration	1' ortho configuration	0.00%	1	1.23%
	305	Fig.3 shows: 1' meta configuration	1' meta configuration	0.00%	1	1.23%
	305	Fig.3 shows: 1' para configuration	1' para configuration	16.67%	78	96.30%
	305	Fig.3 shows: 2a quadra configuration		0.00%	0	0.00%
	305	Fig.3 shows: 2a hexa configuration		0.00%	0	0.00%
	305	Fig.3 shows: 2a penta configuration		0.00%	0	0.00%
	305	[No response]	[No response]	0.00%	1	1.23%
	306	Fig.4 shows: 1' ortho configuration		0.00%	0	0.00%
	306	Fig.4 shows: 1' meta configuration		0.00%	0	0.00%
	306	Fig.4 shows: 1' para configuration		0.00%	0	0.00%
	306	Fig.4 shows: 2a quadra configuration	2a quadra configuration	16.67%	75	92.59%
	306	Fig.4 shows: 2a hexa configuration	2a hexa configuration	0.00%	3	3.70%
	306	Fig.4 shows: 2a penta configuration	2a penta configuration	0.00%	2	2.47%
	306	[No response]	[No response]	0.00%	1	1.23%
	307	Fig.5 shows: 1' ortho configuration		0.00%	0	0.00%
	307	Fig.5 shows: 1' meta configuration		0.00%	0	0.00%
	307	Fig.5 shows: 1' para configuration		0.00%	0	0.00%
	307	Fig.5 shows: 2a quadra configuration	2a quadra configuration	0.00%	2	2.47%
	307	Fig.5 shows: 2a hexa configuration	2a hexa configuration	16.67%	75	92.59%
	307	Fig.5 shows: 2a penta configuration	2a penta configuration	0.00%	3	3.70%
	307	[No response]	[No response]	0.00%	1	1.23%
	308	Fig.6 shows: 1' ortho configuration	i	0.00%	0	0.00%
		Fig.6 shows: 1' meta configuration	1' meta configuration	0.00%	1	1.23%
		Fig.6 shows: 1' para configuration		0.00%	0	0.00%
		Fig.6 shows: 2a quadra configuration	2a quadra configuration	0.00%		1.23%
		Fig.6 shows: 2a hexa configuration	2a hexa configuration	0.00%		3.70%
		Fig.6 shows: 2a penta configuration	2a penta configuration	16.67%		92.59%
		[No response]	[No response]	0.00%		1.23%

Table 12. Model answers for question 20 on Protoperidinium

Questions 21 to 27 are multiple choice type questions on the identification of *Protoperidinium* species. Each question showed several light microscopy and calcofluor images of *Protoperidinium* species and participants were asked to choose from a drop-down list of choices the correct one. Table 13 shows the model answer for each question and the count and frequency of answers.

Q21	Model response	Partial credit	Count Frequency	Q24	Model response	Partial credit	Count	Frequency
	Protoperidinium depressum	100.00%	76 93.83%		Protoperidinium leonis	100.00%	75	92.59%
	Protoperidinium claudicans	0.00%	2 2.47%		Protoperidinium conicum	0.00%	2	2.47%
	Protoperidinium divergens	0.00%	1 1.23%		Protoperidinium pentagonum	0.00%	2	2.47%
	Protoperidinium crassipes	0.00%	1 1.23%		Protoperidinium claudicans	0.00%	1	1.23%
	Protoperidinium conicum	0.00%	0 0.00%		Protoperidinium divergens	0.00%	0	0.00%
	Protoperidinium minutum	0.00%	0 0.00%		Protoperidinium minutum	0.00%	0	0.00%
	Protoperidinium thorianum	0.00%	0 0.00%		Protoperidinium thorianum	0.00%	0	0.00%
	Protoperidinium pellucidum	0.00%	0 0.00%		Protoperidinium crassipes	0.00%	0	0.00%
	Protoperidinium pentagonum	0.00%	0 0.00%		Protoperidinium pellucidum	0.00%	0	0.00%
	Protoperidinium leonis	0.00%	0 0.00%		Protoperidinium depressum	0.00%	0	0.00%
	[No response]	0.00%	1 1.23%		[No response]	0.00%	1	1.23%
Q22	Model response	Partial credit	Count Frequency	Q25	Model response	Partial credit	Count	Frequency
	Protoperidinium conicum	100.00%	73 90.12%	-	Protoperidinium minutum	100.00%	80	98.77%
	Protoperidinium crassipes	0.00%	3 3.70%		Protoperidinium leonis	0.00%	0	0.00%
	Protoperidinium depressum	0.00%	2 2.47%		Protoperidinium depressum	0.00%	0	0.00%
	Protoperidinium pentagonum	0.00%	1 1.23%		Protoperidinium conicum	0.00%	0	0.00%
	Protoperidinium leonis	0.00%	1 1.23%		Protoperidinium divergens	0.00%	0	0.00%
	Protoperidinium divergens	0.00%	0 0.00%		Protoperidinium thorianum	0.00%	0	0.00%
	Protoperidinium minutum	0.00%	0 0.00%		Protoperidinium crassipes	0.00%	0	0.00%
	Protoperidinium thorianum	0.00%	0 0.00%		Protoperidinium pellucidum	0.00%	0	0.00%
	Protoperidinium pellucidum	0.00%	0 0.00%		Protoperidinium pentagonum	0.00%	0	0.00%
	Protoperidinium claudicans	0.00%	0 0.00%		Protoperidinium claudicans	0.00%	0	0.00%
	[No response]	0.00%	1 1.23%		[No response]	0.00%	1	1.23%
Q23	Model response	Partial credit	Count Frequency	Q26	Model response	Partial credit	Count	Frequency
	Protoperidinium divergens	100.00%	68 83.95%		Protoperidinium pentagonum	100.000/	74	91.36%
			00 03.95 /0		r iotopenumum pentagonum	100.00%	/4	01.00/0
	Protoperidinium crassipes	0.00%	10 12.35%		Protoperidinium conicum	0.00%		2.47%
	Protoperidinium crassipes Protoperidinium pentagonum	0.00%					2	
		0.00%	10 12.35%		Protoperidinium conicum	0.00%	2 2	2.47%
	Protoperidinium pentagonum	0.00% 0.00%	10 12.35% 1 1.23%		Protoperidinium conicum Protoperidinium pellucidum	0.00% 0.00%	2 2 1	2.47% 2.47%
	Protoperidinium pentagonum Protoperidinium claudicans	0.00% 0.00% 0.00%	10 12.35% 1 1.23% 1 1.23%		Protoperidinium conicum Protoperidinium pellucidum Protoperidinium leonis	0.00% 0.00% 0.00%	2 2 1 1	2.47% 2.47% 1.23%
	Protoperidinium pentagonum Protoperidinium claudicans Protoperidinium conicum Protoperidinium leonis	0.00% 0.00% 0.00% 0.00%	10 12.35% 1 1.23% 1 1.23% 0 0.00%		Protoperidinium conicum Protoperidinium pellucidum Protoperidinium leonis Protoperidinium divergens Protoperidinium depressum	0.00% 0.00% 0.00% 0.00%	2 2 1 1 0	2.47% 2.47% 1.23% 1.23%
	Protoperidinium pentagonum Protoperidinium claudicans Protoperidinium conicum	0.00% 0.00% 0.00% 0.00% 0.00%	10 12.35% 1 1.23% 1 1.23% 0 0.00% 0 0.00%		Protoperidinium conicum Protoperidinium pellucidum Protoperidinium leonis Protoperidinium divergens	0.00% 0.00% 0.00% 0.00%	2 2 1 1 0 0	2.47% 2.47% 1.23% 1.23% 0.00%
	Protoperidinium pentagonum Protoperidinium claudicans Protoperidinium conicum Protoperidinium leonis Protoperidinium minutum	0.00% 0.00% 0.00% 0.00% 0.00%	10 12.35% 1 1.23% 1 1.23% 0 0.00% 0 0.00% 0 0.00%		Protoperidinium conicum Protoperidinium pellucidum Protoperidinium leonis Protoperidinium divergens Protoperidinium depressum Protoperidinium minutum	0.00% 0.00% 0.00% 0.00% 0.00%	2 2 1 1 0 0 0	2.47% 2.47% 1.23% 1.23% 0.00% 0.00%
	Protoperidinium pentagonum Protoperidinium claudicans Protoperidinium conicum Protoperidinium leonis Protoperidinium minutum Protoperidinium thorianum Protoperidinium depressum	0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	10 12.35% 1 1.23% 1 1.23% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00%		Protoperidinium conicum Protoperidinium pellucidum Protoperidinium leonis Protoperidinium divergens Protoperidinium depressum Protoperidinium minutum Protoperidinium thorianum Protoperidinium crassipes	0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	2 2 1 1 0 0 0 0 0 0	2.47% 2.47% 1.23% 1.23% 0.00% 0.00% 0.00%
	Protoperidinium pentagonum Protoperidinium claudicans Protoperidinium conicum Protoperidinium leonis Protoperidinium minutum Protoperidinium thorianum Protoperidinium depressum Protoperidinium pellucidum	0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	10 12.35% 1 1.23% 1 1.23% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00%		Protoperidinium conicum Protoperidinium pellucidum Protoperidinium leonis Protoperidinium divergens Protoperidinium depressum Protoperidinium minutum Protoperidinium thorianum	0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	22 22 11 00 00 00 00	2.47% 2.47% 1.23% 1.23% 0.00% 0.00% 0.00%
	Protoperidinium pentagonum Protoperidinium claudicans Protoperidinium conicum Protoperidinium leonis Protoperidinium minutum Protoperidinium thorianum Protoperidinium depressum	0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	10 12.35% 1 1.23% 1 1.23% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00%	027	Protoperidinium conicum Protoperidinium pellucidum Protoperidinium leonis Protoperidinium divergens Protoperidinium depressum Protoperidinium minutum Protoperidinium thorianum Protoperidinium crassipes Protoperidinium claudicans	0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	22 21 11 00 00 00 00 00 00	2.47% 2.47% 1.23% 1.23% 0.00% 0.00% 0.00% 0.00% 0.00% 1.23%
	Protoperidinium pentagonum Protoperidinium claudicans Protoperidinium conicum Protoperidinium leonis Protoperidinium minutum Protoperidinium thorianum Protoperidinium depressum Protoperidinium pellucidum	0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	10 12.35% 1 1.23% 1 1.23% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00%	Q27	Protoperidinium conicum Protoperidinium pellucidum Protoperidinium leonis Protoperidinium divergens Protoperidinium depressum Protoperidinium minutum Protoperidinium thorianum Protoperidinium crassipes Protoperidinium claudicans [No response] Model response	0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% Partial credit	22 22 11 00 00 00 00 00 11 Count	2.47% 2.47% 1.23% 1.23% 0.00% 0.00% 0.00% 0.00% 1.23% Frequency
	Protoperidinium pentagonum Protoperidinium claudicans Protoperidinium conicum Protoperidinium leonis Protoperidinium minutum Protoperidinium thorianum Protoperidinium depressum Protoperidinium pellucidum	0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	10 12.35% 1 1.23% 1 1.23% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00%	Q27	Protoperidinium conicum Protoperidinium pellucidum Protoperidinium leonis Protoperidinium divergens Protoperidinium depressum Protoperidinium minutum Protoperidinium thorianum Protoperidinium crassipes Protoperidinium claudicans	0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	22 22 11 00 00 00 00 00 11 Count	2.47% 2.47% 1.23% 1.23% 0.00% 0.00% 0.00% 0.00% 0.00% 1.23%
	Protoperidinium pentagonum Protoperidinium claudicans Protoperidinium conicum Protoperidinium leonis Protoperidinium minutum Protoperidinium thorianum Protoperidinium depressum Protoperidinium pellucidum	0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	10 12.35% 1 1.23% 1 1.23% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00%	Q27	Protoperidinium conicum Protoperidinium pellucidum Protoperidinium leonis Protoperidinium divergens Protoperidinium divergens Protoperidinium divergens Protoperidinium divergens Protoperidinium divergens Protoperidinium divergens Protoperidinium minutum Protoperidinium thorianum Protoperidinium crassipes Protoperidinium claudicans [No response] Model response Protoperidinium thorianum	0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% Partial credit 100.00%	22 22 11 00 00 00 00 00 11 Count 79 1	2.47% 2.47% 1.23% 1.23% 0.00% 0.00% 0.00% 0.00% 1.23% Frequency 97.53%
	Protoperidinium pentagonum Protoperidinium claudicans Protoperidinium conicum Protoperidinium leonis Protoperidinium minutum Protoperidinium thorianum Protoperidinium depressum Protoperidinium pellucidum	0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	10 12.35% 1 1.23% 1 1.23% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00%	Q27	Protoperidinium conicum Protoperidinium pellucidum Protoperidinium leonis Protoperidinium divergens Protoperidinium crassipes Protoperidinium claudicans INor response Protoperidinium thorianum Protoperidinium claudicans Protoperidinium claudicans Protoperidinium leonis	0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% Partial credit 100.00%	22 22 11 00 00 00 00 00 11 Count 79 11 00	2.47% 2.47% 1.23% 1.23% 0.00% 0.00% 0.00% 0.00% 1.23% Frequency 97.53% 1.23%
	Protoperidinium pentagonum Protoperidinium claudicans Protoperidinium conicum Protoperidinium leonis Protoperidinium minutum Protoperidinium thorianum Protoperidinium depressum Protoperidinium pellucidum	0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	10 12.35% 1 1.23% 1 1.23% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00%	Q27	Protoperidinium conicum Protoperidinium pellucidum Protoperidinium leonis Protoperidinium divergens Protoperidinium depressum Protoperidinium minutum Protoperidinium thorianum Protoperidinium crassipes Protoperidinium claudicans [No response] Model response Protoperidinium thorianum Protoperidinium thorianum Protoperidinium thorianum Protoperidinium thorianum Protoperidinium thorianum Protoperidinium thorianum Protoperidinium claudicans Protoperidinium claudicans Protoperidinium leonis Protoperidinium leonis	0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% Partial credit 100.00% 0.00%	22 11 00 00 00 11 Count 79 1 00 00	2.47% 2.47% 1.23% 1.23% 0.00% 0.00% 0.00% 0.00% 1.23% Frequency 97.53% 1.23% 0.00%
	Protoperidinium pentagonum Protoperidinium claudicans Protoperidinium conicum Protoperidinium leonis Protoperidinium minutum Protoperidinium thorianum Protoperidinium depressum Protoperidinium pellucidum	0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	10 12.35% 1 1.23% 1 1.23% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00%	Q27	Protoperidinium conicum Protoperidinium pellucidum Protoperidinium leonis Protoperidinium divergens Protoperidinium divergens Protoperidinium divergens Protoperidinium divergens Protoperidinium divergens Protoperidinium depressum Protoperidinium thorianum Protoperidinium crassipes Protoperidinium claudicans [No response] Model response Protoperidinium thorianum Protoperidinium thorianum Protoperidinium thorianum Protoperidinium depressum Protoperidinium leonis Protoperidinium claudicans Protoperidinium depressum Protoperidinium conicum	0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% Partial credit 100.00% 0.00% 0.00%	22 11 00 00 00 00 11 Count 79 1 00 00 00	2.47% 2.47% 1.23% 0.00% 0.00% 0.00% 0.00% 0.00% 1.23% Frequency 97.53% 1.23% 0.00% 0.00%
	Protoperidinium pentagonum Protoperidinium claudicans Protoperidinium conicum Protoperidinium leonis Protoperidinium minutum Protoperidinium thorianum Protoperidinium depressum Protoperidinium pellucidum	0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	10 12.35% 1 1.23% 1 1.23% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00%	Q27	Protoperidinium conicum Protoperidinium pellucidum Protoperidinium leonis Protoperidinium divergens Protoperidinium divergens Protoperidinium divergens Protoperidinium divergens Protoperidinium divergens Protoperidinium thorianum Protoperidinium crassipes Protoperidinium claudicans [No response] Model response Protoperidinium thorianum Protoperidinium claudicans Protoperidinium depressum Protoperidinium claudicans Protoperidinium conicum Protoperidinium depressum Protoperidinium conicum Protoperidinium conicum	0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% Partial credit 100.00% 0.00% 0.00% 0.00% 0.00% 0.00%	22 11 10 00 00 00 11 Count 79 11 00 00 00 00 00 00 00 00 00	2.47% 2.47% 1.23% 0.00% 0.00% 0.00% 0.00% 0.00% 1.23% Frequency 97.53% 1.23% 0.00% 0.00% 0.00%
	Protoperidinium pentagonum Protoperidinium claudicans Protoperidinium conicum Protoperidinium leonis Protoperidinium minutum Protoperidinium thorianum Protoperidinium depressum Protoperidinium pellucidum	0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	10 12.35% 1 1.23% 1 1.23% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00%	Q27	Protoperidinium conicum Protoperidinium pellucidum Protoperidinium leonis Protoperidinium divergens Protoperidinium divergens Protoperidinium divergens Protoperidinium divergens Protoperidinium divergens Protoperidinium thorianum Protoperidinium crassipes Protoperidinium claudicans [No response] Model response Protoperidinium thorianum Protoperidinium thorianum Protoperidinium depressum Protoperidinium claudicans Protoperidinium depressum Protoperidinium depressum Protoperidinium conicum Protoperidinium divergens Protoperidinium minutum	0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% Partial credit 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	22 11 10 00 00 00 11 Count Count 00 00 00 00 00 00 00 00 00 0	2.47% 2.47% 1.23% 1.23% 0.00% 0.00% 0.00% 0.00% 1.23% Frequency 97.53% 1.23% 0.00% 0.00% 0.00% 0.00% 0.00%
	Protoperidinium pentagonum Protoperidinium claudicans Protoperidinium conicum Protoperidinium leonis Protoperidinium minutum Protoperidinium thorianum Protoperidinium depressum Protoperidinium pellucidum	0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	10 12.35% 1 1.23% 1 1.23% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00%	Q27	Protoperidinium conicum Protoperidinium pellucidum Protoperidinium leonis Protoperidinium divergens Protoperidinium divergens Protoperidinium divergens Protoperidinium divergens Protoperidinium divergens Protoperidinium thorianum Protoperidinium crassipes Protoperidinium claudicans [No response] Model response Protoperidinium thorianum Protoperidinium claudicans Protoperidinium depressum Protoperidinium claudicans Protoperidinium depressum Protoperidinium duvergens Protoperidinium conicum Protoperidinium divergens Protoperidinium minutum Protoperidinium crassipes	0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	22 11 10 00 00 00 11 Count Count 00 00 00 00 00 00 00 00 00 0	2.47% 2.47% 1.23% 1.23% 0.00% 0.00% 0.00% 0.00% 1.23% Frequency 97.53% 1.23% 0.00% 0.00% 0.00% 0.00% 0.00%
	Protoperidinium pentagonum Protoperidinium claudicans Protoperidinium conicum Protoperidinium leonis Protoperidinium minutum Protoperidinium thorianum Protoperidinium depressum Protoperidinium pellucidum	0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	10 12.35% 1 1.23% 1 1.23% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00%	Q27	Protoperidinium conicum Protoperidinium pellucidum Protoperidinium leonis Protoperidinium divergens Protoperidinium divergens Protoperidinium divergens Protoperidinium divergens Protoperidinium divergens Protoperidinium thorianum Protoperidinium crassipes Protoperidinium claudicans [No response] Model response Protoperidinium thorianum Protoperidinium thorianum Protoperidinium depressum Protoperidinium claudicans Protoperidinium depressum Protoperidinium depressum Protoperidinium conicum Protoperidinium divergens Protoperidinium minutum	0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% Partial credit 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	22 11 00 00 00 00 11 Count 799 11 00 00 00 00 00 00 00 00 00	2.47% 2.47% 1.23% 1.23% 0.00% 0.00% 0.00% 0.00% 1.23% Frequency 97.53% 1.23% 0.00% 0.00% 0.00% 0.00% 0.00%

Table 13. Model answers for questions 21-27 on Protoperidinium

In Q21 *P.depressum* was easy to identify because of its large size and very distinctive shape. In Q22 *P.conicum* differs from *P.leonis* on typical 'V' shape suture and spines which is seen in the image. Both can be confused as they are ortho-hexa shape. In Q23, *P.divergens* caused most problems. It was

confused with *P.crassipes* by 13% of the participants. Both have a meta-quadra arrangement, but *P.divergens* diverging horns and horns from *P.crassipes* differ in shape and size. In Q24, the answer was *P.leonis* and the same comments apply as in question 22. In Q25 & Q27 these are very distinctive species if also highly unusual shapes to actually belong to the *Protoperidinium* genus. Yet it is this distinctiveness that make them easier to be identified, perfect scores by all here. In Q26, *P.pentagonum* another ortho-hexa *Protoperidinium* like *P.leonis* and *P.conicum* but with a very wide sulcal area between horns and that typical pentagonal shape as it sname indicates.

Q#	Question type	Question name	Attempts	Facility index
5	Numerical	Enumerate 1 BEQ15	81	93.83%
6	Numerical	Enumeration 2 BEQ2015	81	98.77%
7	Numerical	Enumeration 3 BEQ15	81	100.00%
8	Numerical	Enumeration 4 BEQ15	81	97.53%
9	Numerical	Enumeration 5 BEQ15	81	100.00%
10	Numerical	Enumeration 6 BEQ15	81	100.00%
11	Numerical	Enumeration 7 BEQ15	81	100.00%
12	Short answer	Identification video 2 BEQ15	81	97.53%
13	Short answer	Identification video1 BEQ15	81	97.53%
14	Short answer	Identification video3 BEQ15	81	91.36%
15	Short answer	Identification video4 BEQ15	81	88.89%
16	Short answer	Identification video5 BEQ15	81	61.73%
17	Matching	Pseudo-nitzschia chains	81	87.35%
18	Matching	Pseudo-nitzschia terminology,2015	81	92.18%
19	Matching	Peridinioid terminology,2015	81	96.05%
20	Matching	Protoperidinium identification 1	81	94.65%
21	Multiple choice	Protoperidinium 1	81	93.83%
22	Multiple choice	Protoperidinium 2	81	90.12%
23	Multiple choice	Protoperidinium 3	81	83.95%
24	Multiple choice	Protoperidinium 4	81	92.59%
25	Multiple choice	Protoperidinium 5	81	98.77%
26	Multiple choice	Protoperidinium 6	81	91.36%
27	Multiple choice	Protoperidinium 7	81	97.53%

Table 14: Statistics by question type

Table 14 shows the statistics of percentage of correct answers by question and question type. Generally, scores are high for most questions. Questions 16 with 61.73% of correct answers appear to have been the most difficult one for analysts, followed by question 23 on the genus *Protoperidinium* identification (83.95%), but most questions are above the 90% mark with perfect scores for questions 9, 10 and 11.

5. Discussion

The present format of this intercomparison exercise is in operation since 2011 and appears to be a successful working model. This test is divided into two clearly defined sections; an online HAB quiz test set up in a remote platform accessed via the web and the analysis of marine algae in lugol's preserved water samples for abundance and composition. These samples are generally spiked with algal cultures, which allows for a better control of the spiked material in terms of their cell concentration and their identity.

The identification and enumeration exercise has been prepared in a similar fashion to previous years but a number of changes have taken place since 2013 in relation to the use of statistics. This time, we are following the statistical methods laid out in ISO13528 to calculate the performance statistics for the test. Also, some of the forms used to fill the test results have been revamped. The enumeration and identification logsheet (See Annex II), which in previous years have been set up as a Word document for analysts to enter their results and calculations, now is set up as an Excel spreadsheet.

The Excel spreadsheet contains an embedded reduced marine phytoplankton species list which is linked to the identification logsheet table and appears as a dropdown menu list, where analysts must choose the right entries for each sample. The advantages of using these forms set up in this way to include the analysts' results are various but primarily, the results are always readable, numerical transcription errors are avoided and no interpretation of the results are needed as it avoids identifications like e.g. unidentified armoured dinoflagellate, centric diatom, naked dinoflagellates, etc. There are also some disadvantages, as the reduced list can be construed to be an aid to the identification of the species and a deviation to the method.

The results of the exercise have been processed similarly to previous years particularly in relation to using the consensus values of all the analysts to form the basis of the final Z-scores. However, there are definite and important changes to the way we arrive at these averages and confidence interval values.

The new way of calculating these values using the robust averages and standard deviations from ISO 13528 is a definitive departure from previous years. ISO 13528 is the standard used for statistical methods in proficiency testing by interlaboratory comparisons. It describes sound statistical methods and recommendations of their use which can be applied to demonstrate unacceptable levels of laboratory bias. It gives the statistical guidelines for the interpretation of tests and it is to be used as the reference document in future exercises. This standard is only applicable to quantitative data only.

Since 2014, we are using the statistical software programme ProLab Plus version 2.14 to calculate the descriptive statistics for the test and the performance characteristics including the graphical representation of all the results.

Homogeneity and stability test

A homogeneity and stability test carried out by an expert laboratory was calculated using ProLab Plus (Annex VII) and summarized in table 1. This shows that not all items passed the homogeneity and stability test criteria. The standards ISO 17043 and 13528 give some solutions to this problem.

ISO 17043 in note 3 says: "In some cases, materials that are not sufficiently homogeneous or stable are the best available; in such cases, they can still be useful as proficiency test items, provided that the uncertainties of the assigned values or the evaluation of results take due account of this".

We have calculated the standard uncertainty of the assigned values (table 3) from the consensus values by the participants and we have found that in all the test items used in this round the standard uncertainty is negligible.

Also, ISO13528 indicates that when the consensus values form the participants are used, the assigned value can be compared with a reference value in order to ascertain that there is no bias in the method. We have used the data generated in the homogeneity test by an expert laboratory (table 4) as reference data for comparison purposes and we found that the differences between the consensus values and the reference values by the expert laboratory are more than twice its uncertainty for all the test items.

This suggests some level of bias in the measurement method either by the participants, by the expert laboratory or both. This is not critical but it demonstrates that certified reference materials will be essential to investigate further where this bias lies. Also a repeatability study would be necessary to investigate how much of this variation is due to the analysts and how much is due to the analytical method.

ISO 17043 gives another option when the materials are not sufficiently homogeneous or stable which is to include the between sample standard deviation from the homogeneity test values to the assigned standard deviation calculated from the consensus values for each test item. This is usually sufficient to take into account the heterogeneity of the samples.

In this test, although not all the test items have failed the homogeneity test we have decided to include the between sample standard deviation from the homogeneity test to all the measurands (see table 2). It must be

noted that the calculations have been done both with and without adding the in between sample standard deviation to the test items (not shown in this report) and that the differences are not really significant to the final results. In any case, the addition of the in between sample SD effect is to widen the confidence limits for each test item allowing more participants to be within the set limits.

Calculation of performance statistics

The consensus values from the participants (Annex VIII) were used to calculate the performance statistics for the test. These values take into account the heterogeneity of the samples (between sample SD) from the homogeneity test and the assigned values for the test materials used in this round were calculated using the robust algorithm A in annex C of ISO13528 which are derived by an iterative calculation using the new modified averages and standard deviations until the process converges (Annex IX). This method deals with outliers in the dataset and missing values.

These assigned values for each measurand were then used to calculate the Z-scores (Annex X). Laboratory bias assumes a normal distribution of the data across zero and any results outside the warning signal (2SD) or action signal (3SD) would suggest an out of specification result. The results show that Z-scores are generally within the specification of the test for most analysts with a number of warning and action signals. A warning signal is a result between 2 and 3SD of zero and an action signal is a result outside 3SD. Two warning signals in consecutive intercomparisons give rise to an action signal. An action signal signifies that an investigation of the causes by the laboratory should be carried out.

There are a number of warning and action signals arising from this intercomparison which can be found in the table of Z-scores in annex X. Generally, the performance is good for most analysts with perfect scores in all measurands. In this exercise, we had a complete total of 18 Warning signals, 4 Action signals and 1 non-identifications from 588 results which suggests a good overall agreement for all measurands and laboratories.

Combined performance scores

It is common in any rounds of a proficiency testing exercise to obtain results from several test items or measurands, in our case each species found in the samples is a test item or measurand. As this is generally the case during monitoring work, the individual scores for each measurand is analysed individually but also can be used to calculate combined effects for a particular laboratory or analysts such as correlation between results for different measurands. Graphical methods for this include histograms, bar plots and repeatability standard deviations plots.

Mandel's h and k statistics in annex XIII present measures for graphically surveying the consistency of the data and specific patterns of laboratory performance. The h plot represents all measurand-sample combination possible and reveals that a small number of analysts have consistently over or underestimated the cell counts which indicate a common source of laboratory bias. It is up to individual laboratories to investigate the causes which may cause these anomalies.

The k plot can be interpreted as repeatability precision measures. Again, this graph represents all the measurand-sample combinations possible. Large values here indicate poor repeatability precision. Several large values indicate poor repeatability precision for some or all of the measurands.

The chart of RLP against RSZ (Annex XIV) for all measurands combined indicates systematic laboratory bias. RSZ is based on the standardized sum of all the z-scores for each analyst and it can be interpreted as a single Z-score: that is an evaluation across all samples and measurands. If the RSZ value is within the tolerance limits (2SD), there are no significant systematic deviations of the measurement values for that analyst compared to the rest. The RLP is the mean length of all the Z-scores for each analyst and is derived from the sum of the squared mean length of all the Z-scores. Deviations in RLP are accepted as long as the mean deviations for the analysts don't exceed 1.5 times the average deviations of all laboratories. This is the top of the green area of the rectangle. Laboratories dotted within the green colored area in the graph are within the consensus values shown by the majority of analysts. Those outside it are showing a systematic bias towards over or under-estimating most of their counts in the samples, suggesting some kind of methodology bias.

The plot of repeatability standard deviations shown in annex XV uses a modified approach to the circle technique of van Nuland. This plot uses the average and standard deviation of each laboratory/analyst and plots one against the other. Because of this modified approach, the critical region drawn doesn't have the shape of a circle anymore. This critical region corresponds to a significance level of 5% for the inner layer, 1% and 0.1% for the most outer layer. This plot determines which laboratories/analysts are having unusual averages and standard deviations. Plots of repeatability standard deviation assume that there is no difference between laboratories means +SD.

Qualitative data

The scope of ISO13528 does not include qualitative results, but the correct identification of the organisms in the samples is still a very important part of the exercise, as correct/incorrect/not-identified flags will be given for this.

The data received from the analysts (Table 5) shows that analysts are highly skilled in the identification of marine phytoplankton and the results suggest that there is consensus among analysts on most of the species identified in the samples with near perfect scores for all identifications.

The diatom cultures used in this year's intercomparison were grown using orbital shakers to improve the strength of their silica frustules but we did not find any particular improvement of the organisms used. *P.australis* for example grew better without movement while others like *C.granii* grew quite nicely on the orbital shakers. *D.brightmellii* did too but at the end did not preserve that well in the samples and individual cells broke down in halves which we found last year with *Rhizosolenia*. Other chain formers like *A.glacialis* or *G.delicatula* also broke apart upon preservation.

This would indicate that while orbital shakers or rotational apparatus may enhance a number of cultures during growth, we didn't appreciate any significant strengthening of the silica structures of diatoms which did break down upon lugol's preservation and homogenization.

Originally, nine species have been spiked in the samples. The organisms *P.sulcata* and *A.glacialis* could not finally be included in the statistical analysis and final scores as we had encountered problems upon spiking of the samples. *P.sulcata* clumped together and chains were stuck to each other within a kind of mucilage substance and therefore did not allow for proper mixing causing large differences between samples. The problem with *A.glacialis* was different, this diatom which is found in spiraling chains broke down into individual cells upon homogenization and their shape changed upon preservation causing difficulty in identification. Therefore, it was decided that these two species would not be included in data analysis for the test.

While problems were also encountered with other species in the samples like *D.brightwellii* which tended to breakdown upon preservation and homogenization, the results were used for the test and it was one of the species where all participants scored well. Only one analyst failed to identify *L.polyedrum* in the samples. That was the only non-identification in the whole test. The identification of the organisms was given to species level for all species and a small number of mis-identifications occur; 2 analysts identified *Actynociclus* instead of *C.granii* and 2 others identified *P.reticulatum* instead of *L.polyedrum*.

The identification of *Pseudo-nitzschia* was carried out mainly to genus level. 67% of analysts decided to identify to genus level only as 'seriata group' while those identifying to species level were divided between *P.seriata* and *P.australis* 14% each. *P.pungens* and *P.multiseries* were the other choices.

The flags for correct identifications are based on a correct genus answer rather than on species taxon as discussed in the instructions (see annex III). However, for the purpose of the intercomparison we asked

analysts to identify to species level to give us a better insight on the analysts and laboratories approach to identification and while this is not used for final marks, the information is still valuable for discussion among the participants. It also gives the coordinators of the scheme invaluable data towards species selection in future exercises.

It has been observed from the data received that there is a level of conferring between colleagues working in the same laboratory which becomes obvious when analyzing the results. This sometimes means that one incorrect identification runs throughout all the analysts from the same laboratory. The advice to analysts here is always do your own work and do not confer with others for the purpose of the exercise.

Online HAB quiz

The online HAB quiz has proven very successful and original problems with the software have been ironed out as much as possible. There are still a small number of concerns, specifically with 'short answer' type questions and shuffling within questions and answers. Also, there are problems with analysts not reading or understanding what is required of them and some spelling mistakes which ultimately mean losing marks. Nevertheless, the HAB online quiz is otherwise a good addition to the exercise and this online facility helps greatly the administration and reporting of results.

Descriptive Statistics: code

		Total					
Variable	Grade/100.0	Count	Ν	N*	CumN	Percent	CumPct
code	43.5	1	1	0	1	1.2346	1.235
	62.0	1	1	0	2	1.2346	2.469
	65.9	1	1	0	3	1.2346	3.704
	80.1	1	1	0	4	1.2346	4.938
	80.8	1	1	0	5	1.2346	6.173
	82.6	2	2	0	7	2.4691	8.642
	84.3	1	1	0	8	1.2346	9.877
	86.2	1	1	0	9	1.2346	11.111
	86.6	1	1	0	10	1.2346	12.346
	87.0	1	1	0	11	1.2346	13.580
	87.7	1	1	0	12	1.2346	14.815
	89.1	4	4	0	16	4.9383	19.753
	89.5	1	1	0	17	1.2346	20.988
	89.6	1	1	0	18	1.2346	22.222
	89.9	1	1	0	19	1.2346	23.457
	91.3	8	8	0	27	9.8765	33.333
	92.8	1	1	0	28	1.2346	34.568
	93.3	1	1	0	29	1.2346	35.802
	93.5	4	4	0	33	4.9383	40.741
	94.2	2	2	0	35	2.4691	43.210
	95.7	15	15	0	50	18.5185	61.728
	97.8	4	4	0	54	4.9383	66.667
	98.6	2	2	0	56	2.4691	69.136
	99.3	1	1	0	57	1.2346	70.370
	100.0	24	24	0	81	29.6296	100.000

Table 15 HAB online quiz cummulative percentage of total scores

This year the overall grade was 93.28% across all analysts with 77% of analysts scoring over 90% mark and another 20% scoring over 80% which is a good showing with a small number of analysts (3%) in need of improvement (table 15).

Questions 1 to 4 which did not carry any final marks were phytoplankton image sets and we were interested in the consensus answer by the analysts. Here, there is no right answer to these questions because the information supplied with the images is not enough to identify with certainty. However, sometimes we are asked to give opinions based in images sent to us, so we wanted to know if there was good consensus among participants on these phytoplankton images regardless of whether the answers were right or wrong. The responses suggest that there is a good general consensus among analysts in all sets supplied.

In question 1, most analysts agreed on 'tintinnid' for the first image, although different analysts used different 'tintinnid' names for their answer, 57% agreed on the name *Helicostomella sp.*, 89% of analyst agreed on *navicula* for the second image and 75% on *Guinardia* for the third image of the first set (Annex XVI). In question 2, analysts agreed on *Alexandrium* (81%) and *Navicula* (97%) for the first two images but there was divided opinion on the third one between *Gonnyaulax* (66%) and *Protoperidinium* (33%), so no consensus here.

In question 3, analysts agreed on all the images in the set: *Protoperidinium* (100%), *Detonula* (78%) and *Protoperidinium* (98%). In question 4, the images proved difficult with 56% of analysts choosing *Rhabdonema*, 30% *Striatella* and 12% *Fragillaria* for the first image. 44% *Navicula* for the second image plus an array of other benthic diatom names and for the third image, 76% of analysts went for some kind of 'tintinnid'.

We can conclude that there was good consensus generally for all images of dinoflagellates, planktonic diatoms and even ciliates except for the benthic diatom images which were harder to consensuate to genus level, although everyone agreed on 'benthic diatoms'.

There was good overall consensus between participants on the numerical questions (Q5 to Q11). Most analysts responded within the parameters of the model response and tolerance applied, but there were a small number of inconsistent answers. Only 8 answers from a total of 567 on the 7 questions were answered outside the specification parameters which suggest that we all have a similar approach on the enumeration of phytoplankton cells with small variations due to differences in interpretation of what a viable cell is. The biggest problem wasn't caused by the amount of cells to be counted in the images, but rather by interpreting which cells should be counted, that is why in question 5 whose image showed only 2 cells of the dinoflagellate *P.micans* and two empty thecae caused great problems to participants with five responses outside the model response, that is 5 out 8 of all the responses that were wrong , happened in this particular

question. Some analysts interpreted that the empty theca could be counted and others that one of the 2 cells to be counted didn't qualify for counting as it didn't' contain enough intra-cellular material. Small variations in cell counts can mean large variations over a whole sample and it is something to be aware of.

Questions 12 to 16 were short video clips showing different species in movement. Analysts were able to identify the species well based on these videos, although the worst answered question of the whole quiz was 16 which was the most difficult one of the set of videos.

The taxonomic terminology questions on *pseudo-nitzschia* and *Protoperidinium* (Q17 to 20) were answered well with high scores all around. However, analysts had difficulties differentiating between *pseudo-nitzschia* in valve or girdle view.

The set of questions Q21 to Q27 on *Protoperidinium* didn't create difficulties generally but there was confusion between *P.leonis* and *P.conicum* and *P.pentagonum* which analysts should be aware of in the one instance and *P.divergens* and *P.crassipes* as well.

ANNEX I: Form 1 return slip and checklist

Bequalm Intercomparison PHY-ICN-15-MI1 FORM 1: RETURN SLIP AND CHECKLIST

Please ensure to complete	the table below upon receipt of sa	amples, tl	hen fax
to + 353 91 387201 or sca	n and e-mail to <u>rafael.salas@mari</u>	ne.ie	
Analyst Name:			
Laboratory Name:			
Analyst Code Assigned :			
, 5			
Contact Tel. No. / e-mail			
CHECKLIST OF ITEMS F	RECEIVED (Please circl	e the rele	evant
	answer)		
	-		
Please enter Sample numb	ers received	YES	NO
Set of Instructions		YES	NO
Enumeration and identification	result log sheet (Form 2)	YES	NO

I confirm that I have received the items, as detailed above.

(If any of the above items are missing, please contact Rafael.salas@marine.ie)

SIGNED: _____

DATE: _____

ANNEX II: Form 2 Enumeration and identification results log sheet

Bequalm 2015 Phytopla	ankton Inter	compari	ison Exe	rcise					
Analyst Name:									
Laboratory Code:									
Analyst Code :	1								
Settlement date:									
Volume Chamber (ml)									
Analysis date:									
Sample No:									
Organism	Cell count	Cell count	Cell count		plicatio actor	n Number cells/L	Number cells/L	Number cells/L	Average
									#DIV/0!
									#DIV/0!
									#DIV/0!
									#DIV/0!
									#DIV/0!
									#DIV/0!
									#DIV/0!
									#DIV/0!
									#DIV/0!
									#DIV/0!
									#DIV/0!
									#DIV/0!
									#DIV/0:
									#DIV/0!

ANNEX III: Test instructions

Marine Institute-IOC- BEQUALM-NMBAQC Phytoplankton Proficiency Test PHY-ICN-15-MI1 Vr1.0

Instructions

Please note that these instructions are designed strictly for use in this Intercomparison only.

- 1. Introduction
- 2. Preliminary checks, deadlines and use of forms
- 3. Test method
- 4. Equipment
- 5. Sedimentation chambers and sample preparation
- 6. Counting strategy
- 7. Samples
- 8. Conversion calculations of cell counts
- 9. Online HABs quiz
- **10.** Points to remember

1. Introduction

The Marine Institute, Galway, Ireland, has conducted a phytoplankton enumeration and identification ring trial, under the auspices of BEQUALM-NMBAQC annually since 2005. In 2011, the IOC Science and Communication Centre on Harmful Algae and the Marine Institute initiated collaboration on the design and organization of this exercise which continues under the Marine Institute- IOC -BEQUALM-NMBAQC banner.

Information about this intercomparison exercise can be obtained in the NMBAQC website (www.nmbaqcs.org) under scheme components and Phytoplankton, you'll find information on the current timetable schedule for the exercise, the list of participants, previous reports and the workshop agenda from the previous exercises to give you an idea of the range of activities within this intercomparison exercise. There is also information on all the other Bequalm-NMBAQC schemes. Also, in the IOC website; http://hab.ioc-unesco.org there is information about the exercise under Activities and training courses. Registration to the exercise is through the Marine institute. You need to contact our administrator Fiona Bradley at fiona.bradley@marine.ie to register.

The purpose of this exercise is to compare the performance of laboratories engaged in national official/non-official phytoplankton monitoring programmes, water framework directive, marine strategy framework directive and other laboratories (environmental agencies, consultancies, private companies) working in the area of marine phytoplankton analysis.

The Marine Institute is accredited to the ISO 17025 standard for toxic marine phytoplankton identification and enumeration since 2005 and recognises that regular quality control assessments are crucial to ensure a high quality output of phytoplankton data.

This interlaboratory comparison exercise is conducted to determine the performance of individual laboratories on the composition and abundance of marine microalgae in preserved marine samples and to monitor the laboratories continuing performance.

Participants are asked to carry out microscopic analysis on three marine water samples spiked with cultured material and preserved with neutral lugol's iodine and return results on the composition of the samples to the highest possible taxon and the average abundance in

38

cells per litre for each species in each sample. Each analyst will receive an envelope containing four samples (3 +1 spare) 50ml volume in plastic sterilin tubes.

Please adhere to the following instructions strictly. Please note that these instructions are specific to this ring test only.

2. Preliminary checks, deadlines and use of forms

Upon receipt of the samples, every analyst must make sure that they have received everything listed in the Return Slip and checklist form (Form 1). Make sure that all the samples are intact and sealed properly and check that you have received the enumeration and identification results log sheet (Form 2) as an Excel workbook. Please complete form 1: Return slip and checklist form and send it by fax to (+353 91 387201) or scan, pdf and send it via e-mail to <u>rafael.salas@marine.ie</u>. If you send the form via e-mail, please title the file as Form 1 followed by the exercise code and your full name **i.e. Form 1: BEQ15 Rafael Salas** A receipt of fax/e-mail is necessary for the Marine Institute to validate the test process for each analyst.

Once samples have been receipt, analysts have four weeks to complete the exercise and return the results to Rafael Salas, Marine Institute, Phytoplankton laboratory, Rinville, Oranmore, Co. Galway, Ireland by e-mail (<u>rafael.salas@marine.ie</u>), fax as above or post. If you decide to post your results, make sure first to make a copy of them and then send the originals to the address above. The enumeration and identification results log sheet (Form 2) **must be received** in the Marine Institute by **Friday, July 3rd 2015**.

Please note: Results received after this date will not be included in the final report. Also, if you are posting your results make sure to make a copy for your records before sending the originals. Just in case they never arrive.

An Excel workbook named 'Enumeration and identification logsheet' for you to input your results should be used to write in your results. In this form, first fill in your name, analyst and laboratory code at the top of the form. Fill in all the information relevant to the analysis of your samples like settlement date, settlement chamber volume used in mls, analysis date and sample number in the corresponding cells. Under the column 'organism' a drop down menu will appear with a list of possible species names. You must choose from this list your

answers. The list of species is a reduced list and is designed to have more entries than species are in the samples, you must choose which ones you think have been spiked in the samples and provide a count.

If is not in the list, is not in the sample. The number of rows under the name 'organism' is fourteen but this is arbitrary. It doesn't mean you need to enter fourteen names or that there are fourteen species in the samples. The number of species spiked in the samples is a fixed number but you must decide that yourselves.

In the comments box, you can write information about the test method you used if deviates from the Utermöhl test method and how you performed your calculations if you think is necessary.

Finally, if you send your form back via e-mail, please re-name in the same way as Form 1 above.

3. Test method

The Utermöhl cell counting method (Utermöhl 1931, 1958) is the standard quantitative and qualitative test method used in the Marine Institute phytoplankton national monitoring programme in Ireland. We use 25ml volume sedimentation chambers and we are accredited under the ISO 17025 quality standard.

We advise the use of 25ml sedimentation chambers for the purpose of this intercomparison exercise if these are available. If not, other sub-sample volumes and/or chambers may be used.

If a different method is used, please state all this information in your results.

4. Equipment

The following are the equipment requirements to complete this exercise:

Sedimentation chambers (25ml volume if possible).

<u>Inverted Microscope</u>: This should be equipped with long distance working lenses up to 40 x objective or higher and condenser of Numerical Aperture (NA) of 0.3 or similar and capable

for bright field microscopy. Other types of reflected or transmitted light capabilities may be helpful depending on the type of organisms in the samples and can be used if required.

Tally counters

5. Sedimentation chambers and sample preparation

Sedimentation chambers consist of a clear plastic cylinder, a metal plate, a glass disposable cover-slip base plate and a glass cover plate (Fig 1). Three sedimentation chambers are required.

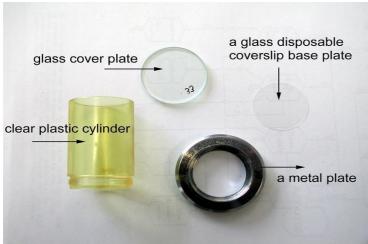


Fig 1: Sedimentation counting chamber

- 5.1 All sedimentation chambers should be cleaned before start
- 5.2 Place a new not used disposable cover slip base plate inside a cleaned metal plate.
- 5.3 Screw the plastic cylinder into the metal plate. Extra care should be taken when setting up chambers. Disposable cover slip base plates are fragile and break easily causing cuts and grazes.

- 5.4 **Important:** Once the chamber is set up, it should be tested for the possibility of leaks by filling the completed chamber with sterile filtered seawater and allowing it to rest for a few minutes. If no leakage occurs, pour out the water, dry out completely and proceed with the next step.
- 5.5 To set up a sample for analysis or sub-sample. Firmly invert the sample 100 times to ensure that the contents are homogenised properly.
 - 5.5.1 Pour the sample into the counting chamber. Samples must be adapted to room temperature beforehand to reduce the risk of air bubbles in the chambers due to temperature changes.
 - 5.5.2 There should be enough sample volume in each sample to fill a 25ml sedimentation chamber. Top up the sedimentation chamber and cover with a glass cover plate to complete the vacuum and avoid air pockets.
 - 5.5.3 Label the sedimentation chamber with the sample number from the sterilin tube.
- 5.6 Use a horizontal surface to place chambers protected from vibration and strong sunlight.
- 5.6 Allow the sample to settle for a minimum of twelve hours.
- 5.7 Set the chamber on the inverted microscope and analyse.
- 5.8 Enumeration and identification results for each sample are to be entered in the Excel workbook Form 2 enumeration and identification results log sheet.
- 5.9 If using a different method to the Utermöhl test method, please send the Standard Operating Procedure for your method with your results. Explain briefly how it works and how samples are homogenized, set up, analysed, counted and how you calculate the final concentration.

6. Counting strategy

Each analyst should carry out a whole chamber cell count (WC) of all the species identified in the samples where possible. Other counting strategies can also be used where the cell density in the sample for a particular organism is high. Show your calculations if using a field of view or transect count.

7. <u>Samples</u>

Analysts will have to analyse three samples to complete this test.

The set consist of four samples. Three must be analysed and one is a spare in case of leakages or breaks. These are made up in sterile filtered Seawater and spiked with culture material of one or more organisms. Participants are asked to carry out a whole chamber count (where possible ; see 6.) on each organism and sample.

The cultures come from the Marine Institute Phytoplankton culture collection, and the IOC Science and communication centre for Harmful Algae culture collection in Denmark. All the materials have been preserved using neutral lugol's iodine and then homogenized following the IOC Manual on Harmful Marine Algae technique of 100 times sample inversion to extract sub-samples.

Each analyst must **count and identify all phytoplankton species** found in the three samples.

It is very important to spend some time becoming familiar with the samples and how the cells appear on the base plate before any count is carried out. The reason for this is that cultured cells could be undergoing division or fusion and look different to the known standard vegetative cell type. See figure 1.

Figure 1: Two Cells fusing

Also note that cells' emptied thecae of dinoflagellates may appear in the samples (see figure 2), or silica frustules in diatoms.

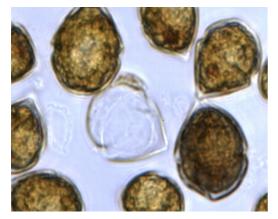


Figure 2: Empty theca

Cells may also vary in size, some cells will appear smaller than others, this is normal in culture conditions (see figure 3). Sometimes Plasmolysis may occur and the cells appear naked and rounded (see figure 4). Aberration of cell morphology can occur also in culture conditions and upon preservation of samples with lugol's iodine.

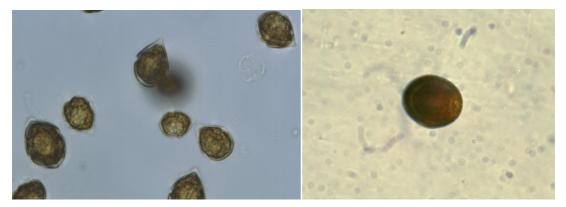


Figure 3: Big versus small cells

Figure 4: Plasmolised cell

When counting cell chains, only count fully intact and divided cells, counting half cells should be avoided (fig.5).

Figure 5Figure 6Sometimes cells may not be in the same focus plane (fig.6) but you still need to count them.

The following rules should be applied for cell counting and identifying in this exercise:

a) Any cells that are dividing or fusing, no matter how advance the stage of division or fusion is should be counted as one cell.

b) Empty theca/ silica frustules should not be counted.

c) Cells should be counted regardless of size, different sizes doesn't necessarily mean different species

d) Plasmolised cells should not be counted

e) Aberrant forms should be counted

f) When counting cell chains, do not count half or broken cells which are part of the chain

g) Identify to the highest taxonomic level possible all species in the samples

h) Participants should name phytoplankton species according to the current literature and scientific name for that species. Where species have been named using a synonym to the

current name and if this synonym is still valid or recognized the answer will be accepted as correct.

These rules are only applicable to this intercomparison exercise.

8. Conversion calculations of cell counts

The number of cells found should be converted to cells per litre.

Please show the calculation step in Form 2: enumeration and identification results log sheet.

9. Online HABs quiz

A HAB taxonomic quiz will be developed in the web platform 'Ocean teacher' and it should be ready by the end of June 2015. All participants will need access to the internet to complete this part of the exercise. More information on when participants will be able to access this exercise will be sent to you by e-mail later on.

In order to access the exercise vou need to qo to the webpage http://classroom.oceanteacher.org/ and login. Analysts which took part in the exercise in any of the last four years will already have a username and password which is still active, those using this facility for the first time need to register first.

When you go to the page <u>http://classroom.oceanteacher.org/</u> in the top right hand corner of this page, you'll see a link to login. Press login and in the next page if you already have registered in the previous four years (2011-2014), enter your username and password to access the course, if you forgot your password press the forgotten password link. If this is your first time using this system, then go to create new account and register your details. Once you register your details we will be able to activate your account. Participants should be able to self-enrol to this exercise, so once you are registered and logged in you must supply an enrolment key to access the exercise. This key is **Beq2015**. We will tell you the exact date the exercise is opened.

So, how do you do access the course?, Once you are all logged in, in the main page scroll down to the bottom and under interdisciplinary courses, click courses, on the next page and under categories click Harmful Algal Bloom (HAB). The Harmful algal bloom programme

Bequalm 2015 link will appear, click on it, enter your key (**Beq2015**) and start your quiz. Make sure you enter the right course.

Analysts will have several months to complete the exercise once it opens (dates to be decided). Only one attempt to the exercise is allowed and once the exercise is submitted analysts won't have access to it, only to review. So, make sure you review all your answers before submitting. There are a number questions and a maximum grade of 100% for a perfect score. All questions have the same score.

There are different types of questions (true/false, numerical, matching, multiple choice short answer). Please note that if you are asked for a number as the answer do not use text, use a numerical value. Also, in questions where you are asked to write the answer, please make sure that the grammar is correct. Incorrect grammar will give an incorrect answer. Please review your work carefully before submitting.

10. Points to remember

- 1. All results must be the analysts' own work. Conferring with other analysts is not allowed.
- The Excel worksheet Form 2: Enumeration and identification results log sheet must be received by the Marine Institute, Phytoplankton unit by Friday July 3rd 2015.

ANNEX IV: Workshop agenda

Agenda Bequalm Phytoplankton Intercomparison workshop

Danhostel, Hillerød, Denmark, 8-12 Nov 2015.

	Morning 9.00-12.00	Afternoon 13.30-17.00
Sunday 8 Nov		Arrival to Danhostel at 16.00
Monday, 9 Nov	Intercomparison exercise results Enumeration and identification exercise results, Rafael Salas. Ocean teacher online HABs quiz exercise results, Rafael Salas	Presentations by the participants
Tuesday, 10 Nov	Lecture and microscope demonstration Update on <i>Pseudo-nitzschia</i> , Nina Lundholm	Field samples from participants, Nina Lundholm, Rafael Salas, Jacob Larsen
Wednesday 11 Nov	Lecture and microscope demonstration Planktonic <i>Prorocentrum</i> species Jacob Larsen	Lecture and microscope demonstration <i>Protoperidnium</i> , Jacob Larsen
Thursday 12 Nov	10 am, departure	

ANNEX V: Participating Laboratories

Company Name		Company Name	
1 Marine Scotland Marine Laboratory	21	IFREMER	
2 Cefas	22	Istituto Zooprofilattico Sperimentale delle Venezie	
Scottish Assocation for Marine Science (SAMS)	23	ARPA Puglia	
4 Aquagestión S.A.	24	Jacobs UK Ltd	
Microalgal Services	25	APEM Limited	
Isle of Man Government Laboratory	26	LABORATORIOS ACUÍCOLAS S.A.	
7 IMARES	27	Instituto de Fomento Pesquero	
Agri Food and Biosciences Institute (AFBI)	28	Instituto Federal de Santa Catarina IFSC	
DHI Water and Environment (S) Pte Ltd	29	ARPAM (Agenzia Regionale per la Protezione Ambientale delle Marche)	
Alfred Wegener Institut	30	30 Scottish Environment Protection Agency	
Sydney Water	31	MEA-nl	
ARPA FVG	32	Orbicon A/S	
Fondazione Centro Ricerche Marine	33	Laboratorio de Control de Calidad de los Recursos Pesqueros	
Instituto del Mar del Peru - IMARPE	34	Sir Alister Hardy Foundation for Ocean Science (SAHFOS)	
Laboratorios de Control de la Calidad Ambiental	35	DOE (NI) Environment and Marine Group Laboratory	
OCEANSNELL	36	SMHI / Swedish Meteorological and Hydrological Institute	
IRTA	37	Marine Institute Galway	
CBBA			
	38	Marine Institute Bantry	
Aristotle University of Thessaloniki		Comulate Johanstein, Calutions (CLC)	
ARPAC-Agenzia Regionale Protezione Ambientale Campania	39	Complete laboratory Solutions (CLS)	

<image/> <image/> <image/> <image/> <image/> <image/> <image/> <image/> <section-header><image/><section-header><image/></section-header></section-header>	<image/> <image/> <image/> <image/> <image/>			*		
<section-header><section-header><section-header><section-header><section-header><section-header><form></form></section-header></section-header></section-header></section-header></section-header></section-header>	<section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header>		For	as na Mara BAO Educatio	nal, Scientific and Oceanographic	tai
<section-header><section-header><section-header><section-header><section-header><section-header><form></form></section-header></section-header></section-header></section-header></section-header></section-header>	<section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header>	Biolog	pical Effects Quali	ity Assurance in Monitor	ing Programmes /	
<section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header>	<section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header>					
<section-header><section-header> Definition of performance (participants) Pricipant details: Controls: Pricipants Pricipants</section-header></section-header>	<section-header><section-header><section-header> Description Descri</section-header></section-header></section-header>					
Phytoplankton Component of Community Analysis Year 2015 Participanti Name of organisation: Country: Participant: Partic	<section-header><section-header><section-header> <text></text></section-header></section-header></section-header>		STATEM		ICE	
Year 2015 Perticipant details: Name of organisation: Country: Participant: Year of joining: Year of participation: Statement Issued: XX/XX/2015 Marken Number: XI/BQM-15-001 Summary of results: Integrating integration Outpoment Name Identification Phytoplankton abundance and Overall Result Taxonomy quiz Marine Institute Overall Result Taxonomy quiz IOC Science and Distum brightenetilication in the dation of the control of the anticipant in the source of the subscience and the anticipant in the laboratory participating in this component: Nation component not applicable to the participant, n/p: Participant not participating in this component: Marine trastic in the laboratory participated. See over for details. Phytaplanktom the results for all components in which the laboratory participated. See over for details. Details certified by: Data Size Marken State Marken State	Year 2015 Participant details: Mame of organisation: Country: Participant:					
Name of organisation: Country: Participant: Year of joining: Years of participation: Statement Issued: XX/XX/2015 Statement Number: MI-BQM-15-001 Summary of results:	Name of organisation: Country: Participant: Year of joining: Years of participation: Statement Issued: XX/XX/2015 Statement Number: XX/XX/2015 The Downson of		J - 1 J		J J	
Statement Number: MI-BQM-15-001 Summary of results: Image: Subcontracked Service (4-2 Sigma limits) identification identification is service (4-2 Sigma limits) identification identification is service (4-2 Sigma limits) identification is service (4-2 Sigma limits) identification is service (4-2 Sigma limits) identification identification is service (4-2 Sigma limits) identification is service (4-2	Statement Number: MEBQM-15-001 Summary of results: <u>onponent Name</u> <u>subcontracted</u> <u>Scrippisella trochoidea</u> <u>Prorecentrum micans</u> <u>indentification</u> <u>Prorecentrum micans</u> <u>Phytoplankton abundance and</u> <u>maine Institute</u> <u>Prorecentrum micans</u> <u>Dirydum brighteedling</u> 	Name of organisation Country: Participant: Year of joining:				
Statement Number: MI-BQM-15-001 Summary of results: Image: Subcontracked Service (4-2 Sigma limits) identification identification is service (4-2 Sigma limits) identification identification is service (4-2 Sigma limits) identification is service (4-2 Sigma limits) identification is service (4-2 Sigma limits) identification identification is service (4-2 Sigma limits) identification is service (4-2	Statement Number: MEBQM-15-001 Summary of results: <u>omponent Name</u> <u>Subcontracted</u> <u>Scrippsiella trochoidea</u> <u>Prorecentrum micans</u> <u>identification</u> <u>Prorecentrum micans</u> <u>Phytoplankton abundance and</u> <u>Marine Institute</u> <u>Scrippsiella trochoidea</u> <u>Prorecentrum micans</u> <u>Phytoplankton abundance and</u> <u>Marine Institute</u> <u>Scrippsiella trochoidea</u> <u>Porecentrum micans</u> <u>Phytoplankton abundance and</u> <u>Marine Institute</u> <u>Scrippsiella trochoidea</u> <u>Prorecentrum micans</u> <u>Overall Result Taxonomic quiz (Pass Mark 70%, over 90% proficient)</u> <u>Overall Result Taxonomic quiz (Pass Mark 70%, over 90% proficient)</u> <u>Murmful algae</u> <u>Murmful algae</u> <u>Marmful algae</u> <					
Component Name Subcontracted Results identification Z-score (H-2 Signa limits) identification Phytoplankton abundance and composition PHY-ICN-15-MII Marine Institute Proceentrum micans Image: Contract of the second sec	Component Name Subcontracted Results identification Phytoplank ton abundance and composition PHY-ICN-15-MII Marine Institute Scrippsiellatrum micans Lingulodinium polyderum Image of the mark of					
Component Name Subcontracted Results identification Z-score (H-2 Signa limits) identification Phytoplankton abundance and composition PHY-ICN-15-MII Marine Institute Proceentrum micans Image: Contract of the second sec	Component Name Subcontracted Results identification Phytoplank ton abundance and composition PHY-ICN-15-MII Marine Institute Scrippsile It anstralis Image Institute Phytoplank ton abundance and composition PHY-ICN-15-MII Marine Institute Proceentrum micans Image Institute Overall Result Taxonomic quiz (Pass M ark 70%, over 90% proficient) Image Institute Image Institute Image Institute Phytoplankton Taxonomy quiz IOC Science and communication Centre on Harmful algae Image Institute Image Institute n/a: component not applicable to the participant; n/p: Participant not participating in this component; n/r: no data received from participant Image Institute Science Institute Details certified by: Image Institute Image Institute Image Institute Image Institute Joe Silke Rafael Gallardo Salas Image Institute Image Institute Image Institute	Summary of results.				
Phytoplankton abundance and composition PHY-ICN-15-MII Marine Institute Scrippiella trochoidea Proceentrum micans Lingulodinium polyedrum Pseudo-nitzschia australis Ditylum brightvetlii Overall Result Taxonomic quiz (Pass M ark 70%, over 90% proficient) Phytoplankton Taxonomy quiz IOC Science and communication Centre on Harmful algae n/a: component not applicable to the participant; n/p: Participant not participated. See over for details. Notes: Details certified by: Joe Silke Rafael Gallardo Salas	Phytoplank ton abundance and composition PHY-ICN-15-MII Marine Institute Scrippsiella trochoidea Proceentrum micans Lingulodinium polyedrum Disylum brightwelli Disylum brightwelli Disylum brightwelli Disylum brightwelli Overall Result Taxonomic quiz (Pass M ark 70%, over 90% proficient) Disylum brightwelli Disylum brightwelli Phytoplankton Taxonomy quiz IOC Science and communication Centre on Harmful algae Disylum brightwelli Disylum brightwelli n/a: component not applicable to the participant; n/p: Participant not participating in this component; n/r: no data received from participant n/p: Participant not participated. See over for details. Notes: Details certified by: Disylum brightwelli Disylum brightwelli Joe Silke Rafael Gallardo Salas	-	Subsortenated	Results	identification	
Phytoplank ton abundance and composition PHY-ICN-15-MII Marine Institute Prorocentrum micans Ingulabilinium polyedrum Pseudo-nitzschia australis Ditylum brightwellii Ingulabilinium polyedrum Ingulabilinium polyedrum Overall Result Taxonomic quiz (Pass M ark 70%, over 90% proficient) Ingulabilinium polyedrum Ingulabilinium polyedrum Phytoplankton Taxonomy quiz IOC Science and communication Centre on Harmful algae Ingulabilinium polyedrum n/a: component not applicable to the participant; n/p: Participant not participating in this component; n/r: no data received from participant The laboratory participated. See over for details. Notes: Details certified by: Ingulability Joe Silke Rafael Gallardo Salas	Phytoplank ton abundance and composition PHY-ICN-15-MII Marine Ins fitute Prorocentrum micans InguIodinium polyedrum Phytoplank ton abundance and composition PHY-ICN-15-MII Marine Ins fitute Preudo-nitzschi australis InguIodinium Overall Result Taxonomic quiz (Pass M ark 70%, over 90% proficient) InguIodinium InguIodinium InguIodinium Phytoplankton Taxonomy quiz IOC Science and communication Centre on Harmful algae IOC Science and communication Centre on Harmful algae n/a: component not applicable to the participant; n/p: Participant not participating in this component; n/r: no data received from participant The list shows the results for all components in which the laboratory participated. See over for details. Notes: Details certified by: Joe Silke Rafael Gallardo Salas	Component Name	Subconuacted			
Phytoplankton abundance and composition PHY-ICN-15-MII Marine Institute Pseudo-nitzschia australis Ditylum brightwellii Ditylum brightwellii Image: Coscinodiscus granii Overall Result Taxonomic quiz (Pass M ark 70%, over 90% proficient) Image: Coscinodiscus granii Image: Coscinodiscus granii Phytoplankton Taxonomy quiz IOC Science and communication Centre on Harmful algae IOC Science and communication Centre on Harmful algae n/a: component not applicable to the participant; n/p: Participant not participating in this component; n/r: no data received from participant The list shows the results for all components in which the laboratory participated. See over for details. Notes: Image: Mark 50% Subscience Details certified by: Image: Mark 50% Subscience Joe Silke Rafael Gallardo Salas	Phytoplankton abundance and composition PHY-ICN-15-MII Marine Institute Pseudo-nitzschi a australis D itylum brightwellii D D itylum brightwellii D Overall Result Taxonomic quiz (Pass M ark 70%, over 90% proficient) Phytoplankton Taxonomy quiz PHY-ICN-14-MII IOC Science and communication Centre on Harmful algae n/a: component not applicable to the participant; n/p: Participant not participating in this component; n/r: no data received from participant The list shows the results for all components in which the laboratory participated. See over for details. Notes: Details certified by: Joe Silke Rafael Gallardo Salas			Proroc entrum micans		
composition PHY-ICN-15-MII Ditylum brightvetlii Ditylum brightvetlii Image: Coscinodiscus granii Guinardia delicatula Image: Coscinodiscus granii Ov erall Result Taxonomic quiz (Pass M ark 70%, over 90% proficient) Phytoplankton Taxonomy quiz HY-ICN-14-MII IOC Science and communication Centre on Harmful algae n/a: component not applicable to the participant; n/p: Participant not participating in this component; n/r: no data received from participant The list shows the results for all components in which the laboratory participated. See over for details. Notes: Details certified by: Joe Silke Rafael Gallardo Salas	composition PHY-ICN-15-MII Ditylum brightwellii Ditylum brightwellii Coscinodiscus granii Guinardia delicatula Guinardia delicatula Overall Result Taxonomic quiz (Pass M ark 70%, over 90% proficient) Phytoplankton Taxonomy quiz IOC Science and communication Centre on Harmful algae n/a: component not applicable to the participant; n/p: Participant not participating in this component; n/r: no data received from participant The list shows the results for all components in which the laboratory participated. See over for details. Notes: Details certified by: Joe Silke Rafael Gallardo Salas		Marine Institute	· · ·		
Guinardia delicatula Overall Result Taxonomic quiz (Pass M ark 70%, over 90% proficient) Phytoplankton Taxonomy quiz PHY-ICN-14-M11 IOC Science and communication Centre on Harmful algae n/a: component not applicable to the participant; n/p: Participant not participating in this component; n/r: no data received from participant The list shows the results for all components in which the laboratory participated. See over for details. Notes: Details certified by: Joe Silke Rafael Gallardo Salas	Guinardia delicatula Overall Result Taxonomic quiz (Pass M ark 70%, over 90% proficient) Phytoplankton Taxonomy quiz IOC Science and communication Centre on Harmful algae n/a: component not applicable to the participant; n/p: Participant not participating in this component; n/r: no data received from participant The list shows the results for all components in which the laboratory participated. See over for details. Notes: Details certified by: Joe Silke Rafael Gallardo Salas	composition PHY-ICN-15-MI1	Insutur	D it ylum brightwellii		
Overall Result Taxonomic quiz (Pass M ark 70%, over 90% proficient) Phytoplankton Taxonomy quiz PHY-ICN-14-MI1 IOC Science and communication Centre on Harmful algae n/a: component not applicable to the participant; n/p: Participant not participating in this component; n/r: no data received from participant The list shows the results for all components in which the laboratory participated. See over for details. Notes: Multiplicable by: Joe Silke Rafael Gallardo Salas	Overall Result Taxonomic quiz (Pass M ark 70%, over 90% proficient) Phytoplankton Taxonomy quiz PHY-ICN-14-MI1 IOC Science and communication Centre on Harmful algae n/a: component not applicable to the participant; n/p: Participant not participating in this component; n/r: no data received from participant The list shows the results for all components in which the laboratory participated. See over for details. Notes: Details certified by: Joe Silke Rafael Gallardo Salas			¥		
Phytoplankton Taxonomy quiz PHY-ICN-14-MI1 IOC Science and communication Centre on Harmful algae n/a: component not applicable to the participant; n/p: Participant not participating in this component; n/r: no data received from participant The list shows the results for all components in which the laboratory participated. See over for details. Notes: Details certified by: Import Content of Conten	Phytoplankton Taxonomy quiz PHY-ICN-14-MI1 IOC Science and communication Centre on Harmful algae n/a: component not applicable to the participant; n/p: Participant not participating in this component; n/r: no data received from participant The list shows the results for all components in which the laboratory participated. See over for details. Notes: Details certified by: Image: Im		Overall Result Taxonomic ouiz	• •	+	
Phytoplankton Taxonomy quiz PHY-ICN-14-MI1 communication Centre on Harmful algae n/a: component not applicable to the participant; n/p: Participant not participating in this component; n/r: no data received from participant The list shows the results for all components in which the laboratory participated. See over for details. Notes: Details certified by: Multi Gullarde whis Joe Silke Rafael Gallardo Salas	Phytoplankton Taxonomy quz PHY-ICN-14-MI1 communication Centre on Harmful algae n/a: component not applicable to the participant; n/p: Participant not participating in this component; n/r: no data received from participant The list shows the results for all components in which the laboratory participated. See over for details. Notes: Details certified by: Joe Silke Rafael Gallardo Salas			(
n/r: no data received from participant The list shows the results for all components in which the laboratory participated. See over for details. Notes: Details certified by: Joe Silke Rafael Gallardo Salas	n/r: no data received from participant The list shows the results for all components in which the laboratory participated. See over for details. Notes: Details certified by: Joe Silke Rafael Gallardo Salas		communication Centre on			
		n/r: no data received from p. The list shows the results fo Notes: Details certified by: Joe Silke	articipant r all components in which Faland G Rafael Gallardo Sa	the laboratory participated. See over the destance of the second s	-	

ANNEX VI: Statement of performance certificate

ANNEX VI

Description of Scheme components and associated performance standards

In the table overleaf, for those components on which a standard has been set, 'Proficient', 'Good', and ' "Pass" flags indicate that the participants results met or exceeded the standards set by the Bequalm Phytoplankton scheme; 'Participated' flag indicates that the candidate participated in the exercise but did not reach these standards. The Scheme standards are under continuous review.

Component	Annual exercises	Purpose	Description	Standard
Phytoplankton Enumeration Exercise	1	To assess the performance of participants using the Utermöhl cell counting technique on the analysis of prepared sample/s of Seawater preserved in Lugol's iodine spiked using biological or synthetic materials.	Prepared marine water sample/s distributed to participants for abundance and composition of marine phytoplankton species	Participants are required to enumerate the test/s material/s and give a result to within ±2SD or sigma limits of the robust average/s. The robust average/s is/are the mean calculated from the consensus values by the participants following the assessment criteria as set out in ISO13528, Annex c robust analysis: Algorithm A. Participants are also required to identify the organisms found in the samples correctly to the required taxon. Flags will be given as correct, incorrect or not identified
Phytoplankton Oceanteacher online HAB quiz	1	To assess the accuracy of identification of a wide range of Marine phytoplankton organisms.	This is a proficiency test in the identification of marine phytoplankton The exercise tests the participant's ability to identify organisms from photographs and/or illustrations supplied.	The pass mark for the identification exercise is 70%. Results above 90% are deemed proficient, results above 80% are deemed good, results above 70% are deemed acceptable, and results below 70% are reported as "Participated". There are no standards for phytoplankton identification. These exercises are unique and made from scratch.

ANNEX VII: Homogeneity and stability test using ProLab plus

Scrippsiella trochoidea homogeneity test

BEQ2015

Survey of homogeneity test results

29/09/2015

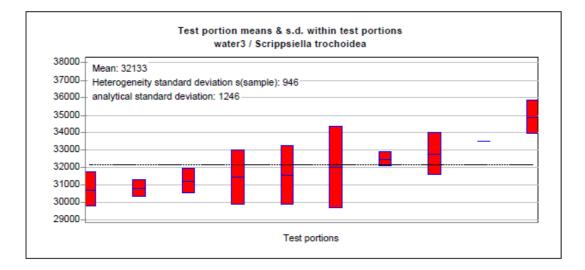
Date:	
20122	
):	Date: 32133 1246): 946 7208 (Manual)

Results of homogeneity analysis (with statistical background)

For the homogeneity test, 10 of the test portions of sample w ater3 w ere randomly selected, and the measurand Scrippsiella trochoidea w as analyzed 2 times. The mean across all 10 test portions is 32133, the standard deviation w ithin test portions s (analytical) (=analytical precision) is 1246, and the standard deviation betw een test portions s(sample) is 946.

F-Test: statistical test on significant heterogeneity

According to the F-test, the heterogeneity standard deviation is not significantly different from 0 (significance level 5%), therefore the sample can be considered sufficiently homogeneous according to this criterion.


ISO 13528: Check for sufficient homogeneity

According to ISO 13528, the heterogeneity standard deviation s(sample) between the test portions of the sample should not exceed 30 % of the target standard deviation.

The heterogeneity standard deviation is less than 30% of the target s.d. 7208 (Manual), therefore the sample can be considered adequately homogeneous according to ISO 13528.

Harmonized Protocol: test on significant heterogeneity

The analytical precision of the method does not exceed 50% of the target s.d. 7208 (Manual). Therefore the evaluation according to the Harmonized Protocol can be carried out for this sample: The heterogeneity standard deviation is less than 30% of the target s.d., therefore the sample can be considered homogeneous.

ANNEX VII: Scrippsiella trochoidea stability test

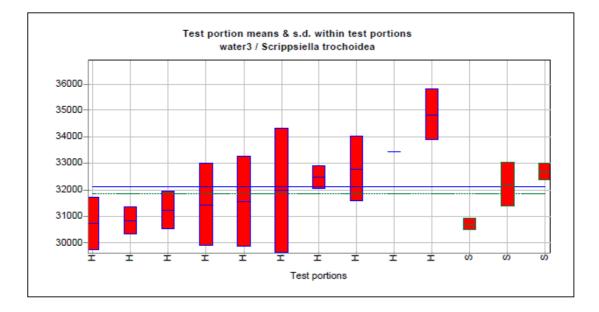
BEQ2015

Survey of stability test results

Sample: Measurand:	water3 Scrippsiella		Date:	29/09/2015
Mean of homoge	neity:	32133		
Mean of stability:		31863		
Target standard	deviation:	7208 (Manual)		

Results of Stability Test

For the test of stability, 3 of the test portions of sample w ater3 have been selected randomly and the measurand Scrippsiella trochoidea has been analysed 2 times.


The mean value across all test portions of the homogeneity analysis equals 32133, the mean value across all test portions of the stability analysis equals 31863.

Therefore, the mean value of the stability analysis lies 0.8 % below the mean value of the homogeneity analysis.

According to ISO 13528, the absolute difference between the mean values of the homogeneity analysis and the stability analysis should not exceed 30 % of the target standard deviation.

Therefore, given the target standard deviation of 7208, the sample may be considered as adequately stable according to ISO 13528.

According to the Harmonized Protocol it is checked whether the mean values of the homogeneity analysis and the stability analysis differ significantly (level of significance 5%).

BEQ2015

Survey of homogeneity test results

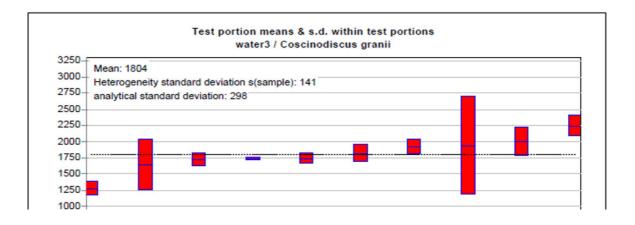
Sample:	water3		Date:	29/09/2015
Measurand:	Coscinodiscu			
Mean:		1804		
Analytical standa	ard deviation:	298		
Heterogeneity st	andard deviation s(samples):	141		
Target standard	deviation:	252 (Manual)		

Results of homogeneity analysis (with statistical background)

For the homogeneity test, 10 of the test portions of sample w ater3 w ere randomly selected, and the measurand Coscinodiscus granii w as analyzed 2 times. The mean across all 10 test portions is 1804, the standard deviation w ithin test portions s(analytical) (=analytical precision) is 298, and the standard deviation betw een test portions s(sample) is 141.

F-Test: statistical test on significant heterogeneity

According to the F-test, the heterogeneity standard deviation is not significantly different from 0 (significance level 5%), therefore the sample can be considered sufficiently homogeneous according to this criterion.


ISO 13528: Check for sufficient homogeneity

According to ISO 13528, the heterogeneity standard deviation s(sample) between the test portions of the sample should not exceed 30 % of the target standard deviation.

The heterogeneity standard deviation is greater than 30% of the target s.d. 252 (Manual), therefore the sample should be considered heterogeneous.

Harmonized Protocol: test on significant heterogeneity

For the specified target standard deviation 252 (Manual), the analytical precision of the method does not fulfil the requirements of the Harmonized Protocol (s(analytical) > 50% of the target standard deviation), and it may not be possible to determine the heterogeneity of the samples. Accordingly, an adequate homogeneity test is not possible.

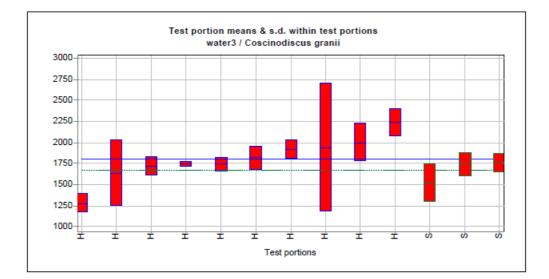
ANNEX VII: Coscinodiscus granii stability test

BEQ2015

Survey		quo dala		
Sample: Measurand:	water3 Coscinodiscu		Date:	29/09/2015
Mean of homoge Mean of stability		1804 1673		
Target standard	deviation:	252 (Manual)		

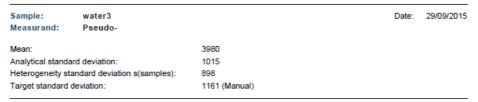
Results of Stability Test

For the test of stability, 3 of the test portions of sample w ater3 have been selected randomly and the measurand Coscinodiscus granii has been analysed 2 times.


The mean value across all test portions of the homogeneity analysis equals 1804, the mean value across all test portions of the stability analysis equals 1673.

Therefore, the mean value of the stability analysis lies 7.2 % below the mean value of the homogeneity analysis.

According to ISO 13528, the absolute difference betw een the mean values of the homogeneity analysis and the stability analysis should not exceed 30 % of the target standard deviation.


Therefore, given the target standard deviation of 252, the sample may not be considered as adequately stable according to ISO 13528.

According to the Harmonized Protocol it is checked whether the mean values of the homogeneity analysis and the stability analysis differ significantly (level of significance 5%).

BEQ2015

Survey of homogeneity test results

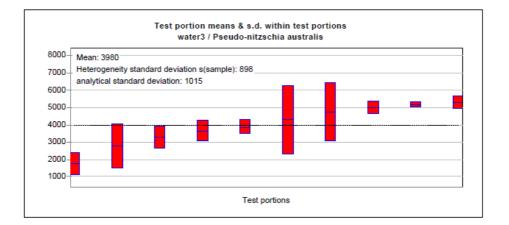
quo da

Results of homogeneity analysis (with statistical background)

For the homogeneity test, 10 of the test portions of sample w ater3 w ere randomly selected, and the measurand Pseudonitzschia australis w as analyzed 2 times. The mean across all 10 test portions is 3980, the standard deviation within test portions s(analytical) (=analytical precision) is 1015, and the standard deviation betw een test portions s(sample) is 898.

F-Test: statistical test on significant heterogeneity

According to the F-test, the heterogeneity standard deviation is not significantly different from 0 (significance level 5%), therefore the sample can be considered sufficiently homogeneous according to this criterion.


ISO 13528: Check for sufficient homogeneity

According to ISO 13528, the heterogeneity standard deviation s(sample) between the test portions of the sample should not exceed 30 % of the target standard deviation.

The heterogeneity standard deviation is greater than 30% of the target s.d. 1161 (Manual), therefore the sample should be considered heterogeneous.

Harmonized Protocol: test on significant heterogeneity

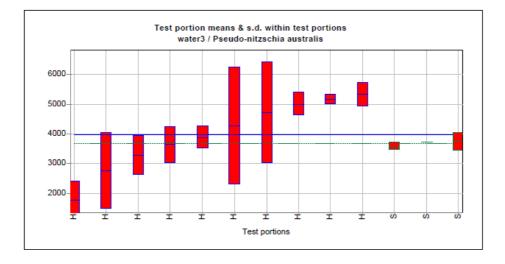
For the specified target standard deviation 1161 (Manual), the analytical precision of the method does not fulfil the requirements of the Harmonized Protocol (s(analytical) > 50% of the target standard deviation), and it may not be possible to determine the heterogeneity of the samples. Accordingly, an adequate homogeneity test is not possible.

BEQ2015

Survey of stability test results

Sample:	water3		Date:	29/09/2015
Measurand:	Pseudo-			
Mean of homoge	eneity:	3980		
Mean of stability	:	3680		
Target standard	deviation:	1161 (Manual)		

Results of Stability Test


For the test of stability, 3 of the test portions of sample w ater3 have been selected randomly and the measurand Pseudonitzschia australis has been analysed 2 times.

The mean value across all test portions of the homogeneity analysis equals 3980, the mean value across all test portions of the stability analysis equals 3680.

Therefore, the mean value of the stability analysis lies 7.5 % below the mean value of the homogeneity analysis.

According to ISO 13528, the absolute difference between the mean values of the homogeneity analysis and the stability analysis should not exceed 30 % of the target standard deviation. Therefore, given the target standard deviation of 1161, the sample may be considered as adequately stable according to ISO 13528.

According to the Harmonized Protocol it is checked whether the mean values of the homogeneity analysis and the stability analysis differ significantly (level of significance 5%).

ANNEX VII: Ditylum brightwellii homogeneity test

BEQ2015

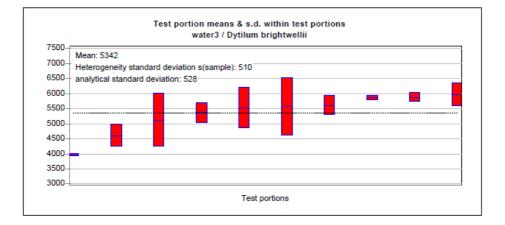
Survey of homogeneity test results			Quo dala
Sample:	water3	Date:	29/09/2015
Measurand:	Dytilum		

5342
528
510
1105 (Manual)

Results of homogeneity analysis (with statistical background)

For the homogeneity test, 10 of the test portions of sample water3 were randomly selected, and the measurand Dytilum brightw ellii was analyzed 2 times. The mean across all 10 test portions is 5342, the standard deviation within test portions s (analytical) (=analytical precision) is 528, and the standard deviation between test portions s(sample) is 510.

F-Test: statistical test on significant heterogeneity


According to the F-test, the heterogeneity standard deviation is not significantly different from 0 (significance level 5%), therefore the sample can be considered sufficiently homogeneous according to this criterion.

ISO 13528: Check for sufficient homogeneity

According to ISO 13528, the heterogeneity standard deviation s(sample) between the test portions of the sample should not exceed 30 % of the target standard deviation.

The heterogeneity standard deviation is greater than 30% of the target s.d. 1105 (Manual), therefore the sample should be considered heterogeneous.

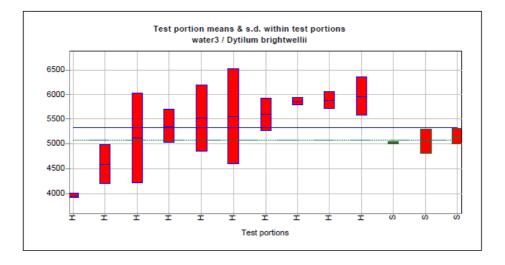
Harmonized Protocol: test on significant heterogeneity The analytical precision of the method does not exceed 50% of the target s.d. 1105 (Manual). Therefore the evaluation according to the Harmonized Protocol can be carried out for this sample: Even though the heterogeneity standard deviation is greater than 30% of the target s.d., this is not statistically significantly the case, and the sample can thus be considered homogeneous.

BEQ2015

Survey of stability test results

Sample: Measurand:	water3 Dytilum		Date:	29/09/2015
Mean of homoge	neity:	5342		
Mean of stability:		5080		
Target standard	deviation:	1105 (Manual)		

Results of Stability Test


For the test of stability, 3 of the test portions of sample w ater3 have been selected randomly and the measurand Dytilum brightw ellii has been analysed 2 times.

The mean value across all test portions of the homogeneity analysis equals 5342, the mean value across all test portions of the stability analysis equals 5080.

Therefore, the mean value of the stability analysis lies 4.9 % below the mean value of the homogeneity analysis.

According to ISO 13528, the absolute difference between the mean values of the homogeneity analysis and the stability analysis should not exceed 30 % of the target standard deviation. Therefore, given the target standard deviation of 1105, the sample may be considered as adequately stable according to ISO 13528.

According to the Harmonized Protocol it is checked whether the mean values of the homogeneity analysis and the stability analysis differ significantly (level of significance 5%).

ANNEX VII: Guinardia delicatula homogeneity test

BEQ2015

Target standard deviation:

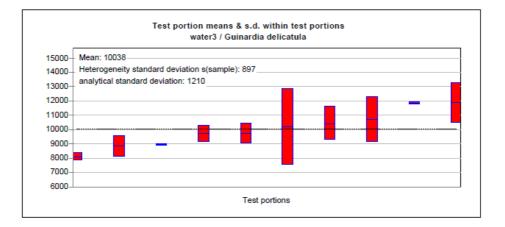
Survey		quo dala		
Sample:	water3		Date:	29/09/2015
Measurand:	Guinardia			
Mean:		10038		
Analytical standard deviation:		1210		
Heterogeneity standard deviation s(samples):		897		

Results of homogeneity analysis (with statistical background)

For the homogeneity test, 10 of the test portions of sample water3 were randomly selected, and the measurand Guinardia delicatula was analyzed 2 times. The mean across all 10 test portions is 10038, the standard deviation within test portions s (analytical) (=analytical precision) is 1210, and the standard deviation between test portions s(sample) is 897.

2035 (Manual)

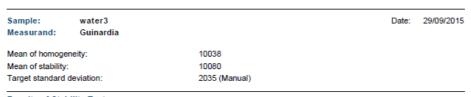
F-Test: statistical test on significant heterogeneity


According to the F-test, the heterogeneity standard deviation is not significantly different from 0 (significance level 5%), therefore the sample can be considered sufficiently homogeneous according to this criterion.

ISO 13528: Check for sufficient homogeneity

According to ISO 13528, the heterogeneity standard deviation s(sample) between the test portions of the sample should not exceed 30 % of the target standard deviation.

The heterogeneity standard deviation is greater than 30% of the target s.d. 2035 (Manual), therefore the sample should be considered heterogeneous.

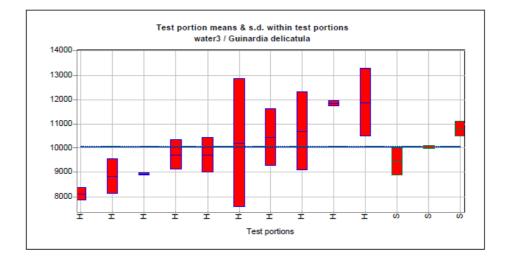

Harmonized Protocol: test on significant heterogeneity For the specified target standard deviation 2035 (Manual), the analytical precision of the method does not fulfil the requirements of the Harmonized Protocol (s(analytical) > 50% of the target standard deviation), and it may not be possible to determine the heterogeneity of the samples. Accordingly, an adequate homogeneity test is not possible.

. Jo da

BEQ2015

Survey of stability test results

Results of Stability Test


For the test of stability, 3 of the test portions of sample w ater3 have been selected randomly and the measurand Guinardia delicatula has been analysed 2 times.

The mean value across all test portions of the homogeneity analysis equals 10038, the mean value across all test portions of the stability analysis equals 10080.

Therefore, the mean value of the stability analysis lies 0.4 % above the mean value of the homogeneity analysis.

According to ISO 13528, the absolute difference between the mean values of the homogeneity analysis and the stability analysis should not exceed 30 % of the target standard deviation. Therefore, given the target standard deviation of 2035, the sample may be considered as adequately stable according to ISO 13528.

According to the Harmonized Protocol it is checked whether the mean values of the homogeneity analysis and the stability analysis differ significantly (level of significance 5%).

ANNEX VII: Lingulodinium polyedrum homogeneity test

BEQ2015

Survey of homogeneity test results

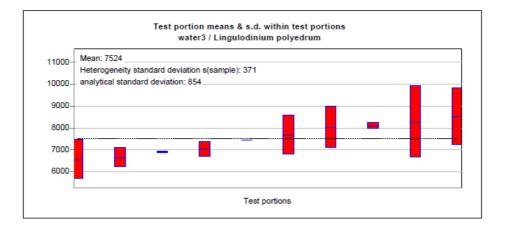
Sample: water3		Date:	29/09/2015
Measurand: Lingulodinium			
Mean:	7524		
Analytical standard deviation:	854		
Heterogeneity standard deviation s(s	imples): 371		
Target standard deviation:	1284 (Manual)		

Results of homogeneity analysis (with statistical background)

For the homogeneity test, 10 of the test portions of sample water3 were randomly selected, and the measurand Lingulodinium polyedrum was analyzed 2 times. The mean across all 10 test portions is 7524, the standard deviation within test portions s(analytical) (=analytical precision) is 854, and the standard deviation between test portions s(sample) is 371.

F-Test: statistical test on significant heterogeneity

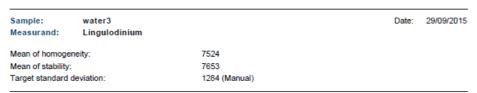
According to the F-test, the heterogeneity standard deviation is not significantly different from 0 (significance level 5%), therefore the sample can be considered sufficiently homogeneous according to this criterion.


ISO 13528: Check for sufficient homogeneity

According to ISO 13528, the heterogeneity standard deviation s(sample) between the test portions of the sample should not exceed 30 % of the target standard deviation.

The heterogeneity standard deviation is less than 30% of the target s.d. 1284 (Manual), therefore the sample can be considered adequately homogeneous according to ISO 13528.

Harmonized Protocol: test on significant heterogeneity


For the specified target standard deviation 1284 (Manual), the analytical precision of the method does not fulfil the requirements of the Harmonized Protocol (s(analytical) > 50% of the target standard deviation), and it may not be possible to determine the heterogeneity of the samples. Accordingly, an adequate homogeneity test is not possible.

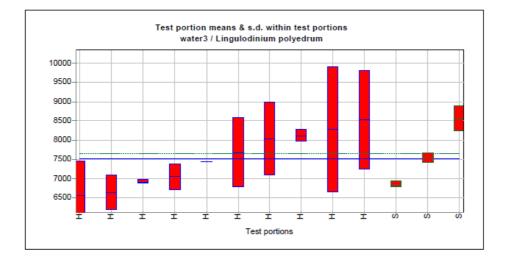
ANNEX VII: Lingulodinium polyedrum stability test

BEQ2015

Survey of stability test results

Joda

Results of Stability Test


For the test of stability, 3 of the test portions of sample w ater3 have been selected randomly and the measurand Lingulodinium polyedrum has been analysed 2 times.

The mean value across all test portions of the homogeneity analysis equals 7524, the mean value across all test portions of the stability analysis equals 7653.

Therefore, the mean value of the stability analysis lies 1.7 % above the mean value of the homogeneity analysis.

According to ISO 13528, the absolute difference between the mean values of the homogeneity analysis and the stability analysis should not exceed 30 % of the target standard deviation. Therefore, given the target standard deviation of 1284, the sample may be considered as adequately stable according to ISO 13528.

According to the Harmonized Protocol it is checked whether the mean values of the homogeneity analysis and the stability analysis differ significantly (level of significance 5%).

ANNEX VII: Prorocentrum micans homogeneity test

BEQ2015

Survey of homogeneity test results

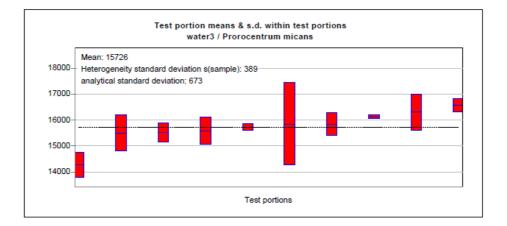
Sample: Measurand:	water3 Prorocentrum		Date:	29/09/2015
Mean:		15726		
Analytical standa	rd deviation:	673		
Heterogeneity standard deviation s(samples):		389		
Target standard	deviation:	2940 (Manual)		

Results of homogeneity analysis (with statistical background)

For the homogeneity test, 10 of the test portions of sample w ater3 w ere randomly selected, and the measurand Prorocentrum micans w as analyzed 2 times. The mean across all 10 test portions is 15726, the standard deviation w ithin test portions s(analytical) (=analytical precision) is 673, and the standard deviation betw een test portions s(sample) is 389.

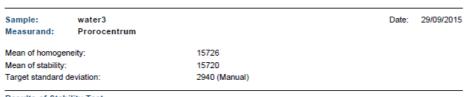
F-Test: statistical test on significant heterogeneity

According to the F-test, the heterogeneity standard deviation is not significantly different from 0 (significance level 5%), therefore the sample can be considered sufficiently homogeneous according to this criterion.


ISO 13528: Check for sufficient homogeneity

According to ISO 13528, the heterogeneity standard deviation s(sample) between the test portions of the sample should not exceed 30 % of the target standard deviation.

The heterogeneity standard deviation is less than 30% of the target s.d. 2940 (Manual), therefore the sample can be considered adequately homogeneous according to ISO 13528.


Harmonized Protocol: test on significant heterogeneity

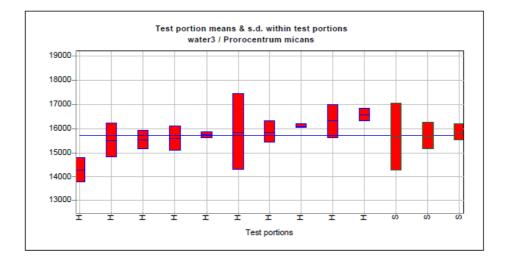
The analytical precision of the method does not exceed 50% of the target s.d. 2940 (Manual). Therefore the evaluation according to the Harmonized Protocol can be carried out for this sample: The heterogeneity standard deviation is less than 30% of the target s.d., therefore the sample can be considered homogeneous.

BEQ2015

Survey of stability test results

Joda

Results of Stability Test


For the test of stability, 3 of the test portions of sample w ater3 have been selected randomly and the measurand Prorocentrum micans has been analysed 2 times.

The mean value across all test portions of the homogeneity analysis equals 15726, the mean value across all test portions of the stability analysis equals 15720.

Therefore, the mean value of the stability analysis lies 0.0 % below the mean value of the homogeneity analysis.

According to ISO 13528, the absolute difference between the mean values of the homogeneity analysis and the stability analysis should not exceed 30 % of the target standard deviation. Therefore, given the target standard deviation of 2940, the sample may be considered as adequately stable according to ISO 13528.

According to the Harmonized Protocol it is checked whether the mean values of the homogeneity analysis and the stability analysis differ significantly (level of significance 5%).

ANNEX VIII: Analysts results

Analysis Derugical largeniz (Longity (Produce (Analysis (Produce (<th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Pseudo</th> <th>-nitzschia</th> <th>australis</th>										Pseudo	-nitzschia	australis
Lambe Lambe <thlambe< th=""> Lambe <thl< th=""><th>Analyst Code</th><th></th><th></th><th></th><th>Analyst Code</th><th></th><th></th><th></th><th>Analyst Code</th><th></th><th>(cells/L)</th><th></th></thl<></thlambe<>	Analyst Code				Analyst Code				Analyst Code		(cells/L)	
B8 10200 19200 19500 1160 64 15600 13600 12600 1260 1260 1260 1270 2260 13900 1300 10 12880 13000 13 7320 6800 12100 14 22800 1490 7220 10 13300 12000 13420 10000 1449 8240 1200 2410 13 7220 1200 1449 1200 14100 1												
19 12880 13440 13000 19 7220 6880 12150 19 2280 3440 2720 62 18600 19700 1860 62 13320 10000 11540 63 1250 1360 1370<												
42 1000 4720 12700 422 10400 10200 1240 1200 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>												
6.2 18440 19240 19480 62.4 12420 10080 11440 62 2140 2880 2280 2480 6 17320 20530 21400 5 9720 10760 14720 5 2560 2260 2460 40 12500 12500 12600 155 1560 2000 2860 41 1460 12600 1560 49 2860 2800 2810 2800 2800 2810 2810 2810 2810 2810 2810 2810 2810 2810 2810 2810 2810 2810 2810 2810 28100 28100 28100												
5 17320 20200 21400 5 9720 19780 14720 5 2500 2600 2100 1430 1600 60 20550 1600 12000 60 9750 8450 12550 60 2100 1430 1400 61 13465 1979 22204 44 1330 15047 1516 50 2700 2207 2207 81 22520 4250 18040 81 9000 13100 9520 81 2200 2707 2207 81 23530 4400 13100 1300 1300 1300 1300 2200 710 6400 240												
41 1500 1700 22160 44 13000 1208 41 2560 460 3120 60 2550 16500 69 1580 17240 19500 89 276 2000 2100												
60 2050 16200 16000 16100 161												
B9 30:40 30:20 80:20 12:20 19:600 89 27:00 20:80 20:0												
94 13465 19758 2239 1297 12976 660 661 3240 2200 786 660 663 3240 2200 7860 660 663 3240 2200 2260 2200 2260 2200 2260 2200 2260 2200 2260 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 1200<												
Bit 22520 24520 1800 81 200 750 G-G 68 33148 3227 79022 68 7530 10880 17160 10 2400 2480 2480 2530 10 33340 24400 2490 2490 1237 3527 6 25214 7061 1373 21 21240 12400 6640 11 13400 13500 13800 13150 1480												
68 3148 32217 39022 68 780 9800 9820 68 3280 2280 2440 6 8600 1763 5290 6 8609 12357 1527 6 5214 7061 1743 61 21440 1760 16000 61 9280 1230 1240 13400 1240 <												
10 33.860 24400 20200 10 11200 10880 17160 10 2400 2400 2400 2400 2400 2400 2400 2400 2400 2400 2400 2400 2400 2400 2400 2410 2400 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
61 214 17080 1650 1350 1350 1360 200 244 2720 11 1120 620 640 11 1340 1956 1360 23 300 2440 2720 11 1120 620 640 11 1340 1920 1200 86 3200 1280 1360 15 1080 1050 21 1600 127 1601 120 120 120 1400 3 2000 1120 1120 1100 1000 2005 72 2000 3160 3260 340 2400 25												
23 15760 15600 15760 13600 23 3000 2440 2720 11 11240 6280 6640 1160 1080 1520 1520 1520 1520 1520 1520 1520 1520 128												
11 11/240 6280 6580 1520 1580 658 9720 11 1360 1580 1360 17 38040 00000 27580 17 16480 12520 160 105 1050 1360 1360 1360 1360 1360 1360 1360 1360 1310 1300 1210 1200 </td <td></td>												
86 15/20 19/20 162/20 96/20 162/20 86 32/20 12/20 162/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 12/20 12/20 14/20 12/20 14/20 12/20 12/20 14/20 12												
16 10800 10560 8440 16 10520 11280 8640 16 920 120 1400 9208 24 10200 11800 15500 24 12700 15500 24 2100 2700 2200 2200 2200 2200 2200 2200 2200 2200 2800 3440 2 23358 24274 21526 2 11514 11989 15343 2 2700 2880 3440 14 22712 22344 21532 14100 26 6840 7520 7120 25 1440 1600 280 14 15560 14360 14 11531 11221 11707 18 2473 300 927 300 927 300 927 300 9200 2200 2400 1180 1320 48 1204 48 240 1120 48 2100 30 1120 48 2100 <	86								86			
3 20560 19320 19320 19320 19320 13500 3 1120 900 2080 72 12335 14490 18819 72 16371 114000 20655 72 3000 3500 3400 72 12335 14474 2152 2 15111 11498 15343 22 2760 2280 3400 74 12334 1423 1442 15157 16305 1710 21 4044 3565 1478 84 18479 241 15175 16305 15540 121 4044 3565 1379 5000 84 18479 241 1517 16305 1520 1220 438 1310 1140 15129 38 2650 1200 1320 44 300 322 1600 1230 440 1310 1410 1312 260 250 1210 1200 1200 1200 1200 1200<												
24 10200 11800 1500 24 12700 12500 240 2200												
72 12335 14400 18819 72 16371 10400 20655 72 3000 3560 3440 14 22712 22304 23528 14 14552 11832 15363 12 266 14400 1600 880 21 22044 22870 18479 21 15175 16305 15740 21 4404 3565 1478 38 18479 24523 36436 38 12131 11261 15392 38 2217 3000 957 50 17740 18480 14960 1200 13100 14160 50 2080 2080 2080 2080 2080 2280 000 1420 1310 48 3000 120 640 4800 442 3200 1208 620 1400 1320 483 3200 2280 200 220 1600 120 640 1210 1120 640 1210 131												
14 22712 22304 23528 14 14522 11822 15368 14 2360 2460 2800 26 19480 14960 15400 1540 1515 15605 17120 21 4040 3565 1478 18 22392 1848 21610 18 16435 1552 15870 188 2478 3739 5000 150 17460 18480 14960 11200 14160 502 2280 2080 2280 2080 2280 2080 2280 2080 2280 1000 48 19400 15200 13204 4800 4480 32 1600 1120 640 31 12402 1077 30 1962 885 13200 13200 4240 13 2440 2880 1210 33 22400 1270 1090 14200 130 4480 448 3030 338 1144 2	72				72				72		3560	
26 19480 14960 15400 26 6840 7520 7120 26 1400 1600 880 18 22094 22870 18479 21 15175 16305 15740 21 4444 3555 1478 18 12492 12506 13304 1960 10240 9880 44 2560 1560 1560 1560 1560 1560 1560 1560 1560 1560 1560 1560 1560 1560 1560 1560 1660 122 660 1520 1120 640 1232 8240 2280 120 1210 640 1232 39 11800 13200 1230 1240 132 240 2712 2211 2211 2211 1127 10049 54 6776 6969 6661 54 2252 2200 2400 7120 1332 2192 1400 1600 1300 1300 1100 1300 <												
21 2202 18479 21 15175 16305 15740 21 4044 3565 1478 18 18479 24523 36436 38 12131 11261 15392 38 217 3000 957 50 17640 18480 14960 50 12080 11040 14160 50 2260 2860 2080 2240 44 15360 12400 1830 44 9080 44 2560 1560 1200 32 8560 3440 9680 32 6430 14720 1440 32 2400 1120 1576 6666 54 2522 2800 2500 2571 1247 1247 1247 1247 1247 1247 1247 1247 1247 1247 1247 1248 3769 1240 1250 138 1257 1230 1360 1460 1240 1260 1260 1260 1260 1260<												
18 22392 18436 21610 18 16435 16522 15870 18 2478 3739 5000 38 11449 24523 36436 38 1131 11561 15390 21860 2080 2080 2080 2080 2080 2080 2080 2080 2080 2280 1560 1560 1560 1560 1560 1560 1560 1580 1580 1440 9880 1420 48 2280 120 640 39 22400 1720 18320 39 11800 13200 1520 2800 2520 54 12012 11127 10804 3480 30 3338 1154 2885 14577 1577 346 9577 1662 88 1469 250 290 2400 700 3000 70 3000 11500 1300 11400 500 70 700 700 700 700 700 70												
50 17640 18480 14960 50 12080 11040 14160 50 2080 2080 2080 2080 2080 2080 1080 44 19840 15200 13240 48 18001 11400 13120 48 2200 1500 1120 600 1120 600 1120 600 1120 600 1120 600 1120 600 1120 600 1120 600 1120 600 1120 600 1120 600 1120 600 1120 600 1120 600 1120 600 1120 700 2500 2500 2500 2530 30 30330 30330 30330 1140 2538 1000 11500 11400 1300 11600 11400 1300 70 2500 2500 2600 700 700 700 700 700 700 700 700 700 700 700 700 11500	18	22392	18436	21610	18	16435	16522	15870	18	2478	3739	5000
44 15360 21960 18360 144 9080 144 2560 1560 1080 32 8560 3440 9680 32 6480 4480 332 1600 1120 640 33 22500 1720 11320 139 2280 2800 2280 2800 2280 2800 2280 2800 2500 2800 2500 2800 2500 2800 2500 2800 2500 2800 2500 2800 2500 2800 2500 2800 2500 280 2900 2460 1840 13100 1100 1300 11500 1346 3769 2123 131 4500 700 3000 70 3000 11600 1340 700 200 2600 2400 300 2400 300 200 2600 2600 2600 2600 2600 2600 2600 2600 2600 2600 2600 2600 2600 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
48 19840 15200 13240 48 13400 13120 48 2020 2280 1006 13 22520 16640 22880 13 10480 14720 14240 13 2840 2880 2130 39 22400 17120 18320 39 11600 1320 16720 39 2950 2800 2500 54 12012 11127 10049 54 6776 6969 6661 54 2665 2271 2271 30 9615 12462 1077 30 10962 888 1769 238 1077 87 14885 17577 17577 87 9346 9377 11692 87 4486 3769 2190 31 22900 2390 33600 1500 11600 12400 700 3000 2600 700 700 1400 1700 1500 13700 1500 33												
13 2220 1640 2280 1120 1420 13 2840 2800 2120 54 12012 11127 10049 54 6776 6969 6661 54 2695 2271 2271 30 9615 12462 10077 30 19962 885 1830 303 1152 2885 58 6538 1577 1577 87 9346 9577 11660 59 4846 3769 2192 31 22900 3300 2560 59 16640 1340 11160 59 4846 3769 200 200 2000 2000 2000 2000												
39 22000 17120 18320 39 11800 13200 16720 39 2920 2200 2200 30 9615 12462 10077 30 10962 8385 18308 303 3038 1154 2285 58 6538 5038 4385 58 1477 1577 8269 58 1769 2538 1077 87 14885 17577 17577 87 9346 9577 11692 87 4846 3769 2190 31 2200 23900 2300 12000 17000 11500 124 2480 3500 2460 70 1900 28300 31600 79 1520 18000 16500 79 2600 700 700 45 34200 37900 3170 45 13600 1700 11700 45 3200 2000 2600 1400 31 2900 32600	32	8560	3440	9680	32	6480	4800	4480	32	1600	1120	640
54 12012 11127 10049 54 6776 6969 6661 54 2695 2271 2271 58 6538 5038 4385 58 14577 11577 8269 58 1769 2538 1077 87 14488 17577 17577 87 9346 9577 11692 87 4446 3769 2192 31 22900 24700 30600 70 1500 11600 12400 70 2500 2000 2600 200 2600 700 1500 11600 12400 70 2500 2700 700												
30 9615 12462 10077 30 10962 8385 18308 30 3038 1154 2885 58 6538 5038 4135 58 16577 11692 87 4846 1759 2538 1077 87 14885 17577 17577 87 9346 9577 11692 87 4846 2538 1070 31 22900 24700 30600 31 11000 13000 11500 31 4500 700 3000 21300 27900 27800 22 17600 11500 124 4500 3500 2400 79 41600 38200 31000 70 1300 4500 700 700 470 24500 2600 6600 1600 33 2300 2000 2500 3200 22000 2500 3302 2000 2500 350 3200 2000 3300 2100 1100 1300												
87 14885 17577 17577 87 9346 9577 11692 87 4846 3769 2152 59 23920 33920 29600 59 16600 13400 11500 31 4500 700 3000 70 19000 28300 31000 70 11500 11500 11600 70 2500 2000 2600 2600 79 41600 38200 31600 79 15200 18000 16500 72 2600 700 700 45 34200 37900 31700 45 13600 14700 1700 45 2400 2200 2000 2500 31 29900 32500 2600 630 33 15800 11700 1500 33 2300 2100 3000 37 31700 31800 31600 37 1100 1200 16500 33 2300 2100 300 37 31700 31900 2100 330 31000 1200 1340												
59 23920 33920 29600 59 16640 11440 11160 59 2480 1840 2500 70 19000 28300 31000 70 13500 11600 11500 21 4500 3000 2600 2600 2600 2600 2600 70 2500 2000 2600 2600 70 1500 11500 124 4500 3500 2000 2600 70 70 2500 2000 700 70 2500 70 70 260 70 70 260 70 70 260 70 70 260 70 70 260 70 70 260 70 70 260 70 70 70 250 270 70 260 70 70 250 2700 2600 70 1400 30 230 230 230 230 230 230 230 230 240 300 240												
31 22900 24700 30600 31 11000 11500 112400 70 2500 2600 2600 22 21300 27900 27800 22 17600 17000 11500 22 4500 3500 2400 79 4160 38200 31600 79 15200 18000 16500 79 2600 700 700 45 34200 3700 25700 26700 47 2600 2200 2700 47 21800 23700 25900 47 11400 17700 4750 3200 2600 3600 33 15800 11500 33 2300 2000 2500 3300 2300 2400 3000 200 1400 300 200 2100 3300 2300 2400 3000 200 2330 35 1420 14400 35 2360 2680 2000 238 350 2400 3700 24												
70 1900 28300 31000 70 13500 11600 12400 70 2500 2600 2600 22 21300 27900 27800 22 17600 11500 122 4500 3500 2400 79 4460 38200 31600 79 1520 18000 16500 79 2600 700 445 34200 37900 31700 45 13600 14700 11700 45 2400 2200 2700 33 29900 32600 36300 33 15800 11700 1500 33 2300 2000 2500 2400 3000 23 31700 31900 31600 37 11100 1200 1500 33 500 4200 3300 2400 3300 2400 3300 2400 3300 2400 3300 2400 3300 2400 3300 2400 3300 2400 3300 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												
79 41600 38200 31600 79 15200 18000 16500 79 2600 700 700 45 34200 37900 31700 45 13600 11700 11700 45 2400 2200 2700 47 21800 23700 26900 47 11400 17700 1750 33 2300 2000 2500 33 29900 32600 36300 33 15800 11700 13700 33 2300 2000 2500 37 31700 31900 31600 37 11100 12000 15300 37 1900 2100 3000 20 45600 40800 31000 20 17600 18500 16200 20 11100 4100 3000 25 19360 19300 2700 25 7520 13700 6200 25 1560 2600 1300 71 17520 13120 8160 700 52 5440 2040 3740 340 3200												
45 34200 37900 31700 45 11600 11700 147 21800 2200 2200 47 21800 23700 26900 47 11400 17700 17500 47 2600 2600 1600 33 22900 32600 36300 33 15800 11700 1200 13700 29 1400 1900 1400 53 30200 26200 26100 53 12300 14900 13400 53 3500 4200 3300 20 45600 40800 31000 20 17600 18500 16500 1350 1500 <td></td>												
47 21800 22700 26900 47 11400 17700 17500 47 2600 2600 2600 29 11100 8800 10600 29 10500 11200 13700 29 1400 1900 1400 37 31700 31900 31600 37 11100 12000 16500 37 1900 2100 3300 20 45600 40800 31000 20 17600 18500 16200 20 1100 4100 3000 20 45600 40800 31000 20 17600 18500 16200 20 1100 4100 3000 210 45600 40800 31000 20 1760 18500 16200 23 1500 1500 1500 150 2680 2000 25 1560 2680 1300 37 17520 13120 8100 7 10760 8640 3200 7 2960 1760 880 71 2440 3200 3200 3200 3200												
33 2990 36200 36300 33 15800 11700 11500 33 2300 2000 2500 29 11100 8800 10600 29 10500 11200 16500 37 1000 3000 3000 3000 3000 3000 3000 3000 3000 3000 20 45600 40800 31000 120 17600 18500 16200 20 1100 4100 3000 28 22700 24800 3050 28 9750 15350 7900 28 1350 1500 1550 35 23800 20900 23380 35 14280 11620 14400 35 2360 2600 1300 7 17520 13120 8160 7 10760 8640 3220 7 2960 1760 880 2480 2480 2480 2480 2480 2480 2480 2480 2480 2480												
37 31700 31900 31600 37 11100 12000 16500 37 1900 2100 3000 53 30200 26200 26100 53 12300 14900 13400 53 3500 4200 3300 20 45600 40800 3050 28 9750 15350 7900 28 1350 1500 1550 35 23800 20900 23380 35 14280 11620 14400 35 2360 2660 1300 21 01950 19300 20700 25 7520 13700 6200 25 1560 2600 1300 7 17520 13120 8160 7 10760 8640 12320 20160 82 4840 2480 2480 2480 2480 2480 2480 2480 2480 2480 2480 2480 2480 2480 2480 1480 1480 1480				36300								
53 30200 26200 26100 53 12300 14900 13400 53 3500 4200 3300 20 45600 40800 31000 20 17600 18500 7900 28 1355 1500 1500 35 23800 20900 23380 35 14280 11620 14400 35 2360 2680 2000 25 19960 19300 20700 25 7520 13700 6200 25 1560 2600 1300 7 17520 13120 8160 7 10760 8640 3520 7 2960 1760 880 82 8840 10240 9320 821 8640 13200 2160 82 2480 2080 2480 2480 2480 2480 2480 2480 2480 2480 2480 2480 2480 2480 2480 2480 2480 2480 440 14000<												
20 45500 40800 31000 20 17600 18500 16200 20 1100 4100 3000 28 22700 24800 3050 28 9750 15307 7900 28 1350 1500 1550 355 23800 20900 23380 35 14280 11620 14400 35 2360 2680 2000 25 10960 19300 20700 25 7520 13700 6200 25 1560 2600 1330 7 17520 13120 8160 7 10760 8660 17000 52 5440 2040 3740 82 8640 10240 9320 82 8640 1320 20160 82 2480 2080 2880 41 1400 12520 1744 40 9640 14880 15480 43 840 3240 4520 43 14600 2320												
35 23800 20900 23380 35 14280 11620 14400 35 2360 2680 2000 25 10960 19300 20700 25 7520 13700 6200 25 1560 2600 1300 7 17520 13120 8160 7 10760 8640 3520 7 2960 1760 880 52 8840 8300 6460 52 14480 16660 17000 52 5440 2040 3740 82 8640 10240 9320 82 8640 12320 20160 82 2480 2080 2480 40 14000 12520 17440 40 9640 14880 15480 43 840 3240 4520 43 14600 29320 27120 43 6960 12600 15840 43 840 3240 4520 4 756 8080 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												
25 10960 19300 20700 25 7520 13700 6200 25 1560 2600 1300 7 17520 13120 8160 7 10760 8640 3320 7 2960 1760 880 52 8840 10240 9320 82 8640 12320 20160 82 2480 2080 2480 40 14000 12520 17440 40 9640 14880 15480 40 1080 1800 1480 41 7560 8880 9080 4 8160 8560 9560 4 2160 1760 2280 55 16550 14000 13200 55 11250 12350 16650 55 3000 2950 2800 366 22542 15092 16150 36 8976 10682 155 3000 2950 2800 36 21242 15092 16150 36 8976 10682 1555 3000 2950 2800 366 2410 210	28	22700	24800	3050	28	9750	15350	7900	28	1350	1500	1550
7 17520 13120 8160 7 10760 8640 3520 7 2960 1760 880 52 8840 8300 6460 52 14480 16660 17000 52 5440 2040 3740 82 8640 10240 9320 82 8640 12320 20160 82 2480 2080 2480 40 14000 12520 17440 40 9640 14880 15480 40 1080 1800 1480 43 14600 29320 27120 43 6960 12600 15840 43 840 3240 4520 43 1560 14950 18768 15 15450 12100 17493 15 2450 4550 3009 55 16550 14000 13200 55 11250 12350 16650 55 3000 2950 2800 36 22442 15921 16150 36 8976 12500 14740 176 2680 2320 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												
52 8840 8300 6460 52 14480 16660 17000 52 5440 2040 3740 82 8640 10240 9320 82 8640 12320 20160 82 2480 2080 2480 71 22114 21463 26992 71 18536 1830 14309 71 2440 3200 3280 40 14000 12520 17440 40 9640 14880 15480 40 1080 1800 1480 43 14600 29320 27120 43 6960 12600 15840 43 840 3240 4520 4 7560 8080 9080 4 8160 8560 9560 4 2160 1760 2280 55 16550 14000 13200 55 11250 12350 16650 55 3000 2950 2800 63 2180 23840 20960 63 17440 17560 15040 63 3520 2760 29												
71 22114 21463 26992 71 18536 18536 14309 71 2440 3200 3280 40 14000 12520 17440 40 9640 14880 15480 40 1080 1800 1480 43 14600 29320 27120 43 6960 12600 15840 43 840 3240 4520 4 7550 8080 9080 4 8160 8560 9560 4 2160 1760 2280 15 15600 14950 18768 15 15450 12100 17493 15 2450 4550 3009 55 16550 14000 13200 55 11250 12350 16650 55 3000 2950 2800 63 21840 23840 20960 63 17440 17560 15040 63 3520 2760 2920 76 15800 23840												
40 14000 12520 17440 40 9640 14880 15480 40 1080 1800 1480 43 14600 29320 27120 43 6960 12600 15840 43 840 3240 4520 4 7560 8080 9080 4 8160 8560 9560 4 2160 1760 2280 15 15600 14950 18768 15 15450 12100 17493 15 2450 4550 3009 55 16550 14000 13200 55 11250 12350 16650 55 3000 2950 2800 36 22542 15092 16150 36 8976 10682 15250 36 2601 2107 5100 8 11324 22474 28012 8 19072 17847 23840 8 3120 4160 2000 2600 276 2150 1300 5800 8480 51 9880 11880 11840 51 3240												
43 14600 29320 27120 43 6960 12600 15840 43 840 3240 4520 4 7560 8080 9080 4 8160 8560 9560 4 2160 1760 2280 15 15600 14950 18768 15 15450 12100 17493 15 2450 4550 3009 55 16550 14000 13200 55 11250 12350 16650 55 3000 2950 2800 36 22542 1592 16150 36 8976 10682 15250 36 2601 2107 5100 8 11324 22474 28012 8 19072 17847 23840 8 3120 4160 2600 63 21800 23840 20960 63 17440 17560 15040 63 3520 2760 2920 76 11500 15840 2380 76 12500 14400 77 3080 2800 3200												
4 7560 8080 9080 4 8160 8560 9560 4 2160 1760 2280 15 15600 14950 18768 15 15450 12100 17493 15 2450 4550 3009 55 16550 14000 13200 55 11250 12350 16650 55 3000 2950 2800 36 22542 15092 16150 36 8976 10682 15250 36 2601 2107 5100 8 11324 22474 28012 8 19072 17847 23840 8 3120 4160 2600 63 21800 23840 20960 63 1740 17560 15040 63 3520 2760 2920 76 11500 15840 23880 76 12500 14400 77 3080 2800 3200 77 24040 23920 26040												
55 16550 14000 13200 55 11250 12350 16650 55 3000 2950 2800 36 22542 15092 16150 36 8976 10682 15250 36 2601 2107 5100 8 11324 22474 28012 8 19072 17847 23840 8 3120 4160 2600 63 21800 23840 20960 63 17440 17560 15040 63 3520 2760 2920 76 11560 15840 23880 76 12560 11200 17120 76 2680 2320 2680 51 13000 5800 8480 51 9880 11880 11840 51 3240 1840 3560 77 24040 23920 26040 77 15120 15200 14400 77 3080 2800 3200 84 7920 9680 <td></td>												
36 22542 15092 16150 36 8976 10682 15250 36 2601 2107 5100 8 11324 22474 28012 8 19072 17847 23840 8 3120 4160 2600 63 21800 23840 20960 63 17440 17560 15040 63 3520 2760 2920 76 11560 15840 23880 76 1260 11200 17120 76 2680 2320 2680 77 24040 23920 26040 77 15120 15200 14400 77 3080 2800 3200 84 7920 9680 9360 84 6400 10400 10120 84 3040 2560 3000 56 14760 20640 16560 56 9040 11520 1500 78 1700 4400 800 65 22150 13950 10000 65 12150 9900 18000 65 1900 2000												
8 11324 22474 28012 8 19072 17847 23840 8 3120 4160 2600 63 21800 23840 20960 63 17440 17560 15040 63 3520 2760 2920 76 11560 15840 23880 76 12560 11200 17120 76 2680 2320 2680 51 13000 5800 8480 51 9880 11880 11840 51 3240 1840 3560 54 7920 9680 9360 84 6400 10400 10120 84 3040 2560 3000 56 14760 20640 16560 56 9040 11520 15040 56 2120 2400 2920 78 22900 19600 27200 78 8600 14100 15000 78 1700 4400 800 56 22150 13950												
63 21800 23840 20960 63 17440 17560 15040 63 3520 2760 2920 76 11560 15840 23880 76 12560 11200 17120 76 2680 2320 2680 51 13000 5800 8480 51 9880 11880 11840 51 3240 1840 3560 77 24040 23920 26040 77 15120 15200 14400 77 3080 2800 3200 84 7920 9680 9360 84 6400 100400 10120 84 3040 2560 3000 56 14760 20640 16560 56 9040 11520 15040 56 2120 2400 2920 78 22900 19600 27200 78 8600 14100 15000 78 1700 4400 800 65 22150 13950 10000 65 12150 9900 18000 1700 3120												
51 13000 5800 8480 51 9880 11880 11840 51 3240 1840 3560 77 24040 23920 26040 77 15120 15200 14400 77 3080 2800 3200 84 7920 9680 9360 84 6400 10400 10120 84 3040 2560 3000 56 14760 20640 16560 56 9040 11520 15040 56 2120 2400 2920 78 22900 19600 27200 78 8600 14100 15000 78 1700 4400 800 65 22150 13950 10000 65 12150 9900 18000 65 1900 2000 3150 83 13480 14840 9640 83 14960 11400 15280 83 2320 3080 3120 69 12250 8400	63	21800	23840	20960	63	17440	17560	15040	63	3520	2760	2920
77 24040 23920 26040 77 15120 15200 14400 77 3080 2800 3200 84 7920 9680 9360 84 6400 10400 10120 84 3040 2560 3000 56 14760 20640 16560 56 9040 11520 15040 56 2120 2400 2920 78 22900 19600 27200 78 8600 14100 15000 78 1700 4400 800 65 22150 13950 10000 65 12150 9900 18000 65 1900 2020 3150 83 13480 14840 9640 83 14960 11400 15280 83 2320 3080 3120 69 12250 8400 10900 69 10800 4450 13150 69 1800 1700 3350 1 20800 18450 22300 1 17500 16500 17050 1 4655 2400												
84 7920 9680 9360 84 6400 10400 10120 84 3040 2560 3000 56 14760 20640 16560 56 9040 11520 15040 56 2120 2400 2920 78 22900 19600 27200 78 8600 14100 15000 78 1700 4400 800 65 22150 13950 10000 65 12150 9900 18000 65 1900 2000 3150 63 12450 19400 15280 83 2320 3080 3120 69 12250 8400 10900 69 10800 4450 13150 69 1800 1700 3350 1 20800 18450 22300 1 17500 16500 17050 1 4650 2400 3250 27 20120 19360 27840 27 9800 20960												
56 14760 20640 16560 56 9040 11520 15040 56 2120 2400 2920 78 22900 19600 27200 78 8600 14100 15000 78 1700 4400 800 65 22150 13950 10000 65 12150 9900 18000 65 1900 2000 3150 63 13480 14840 9640 83 14960 11400 15280 83 2320 3080 3120 69 12250 8400 10900 69 10800 4450 13150 69 1800 1700 3350 1 20800 18450 22300 1 17500 16500 17050 1 4650 2400 3250 27 20120 19360 27840 27 9800 20960 22160 27 2800 3600 4200 85 7760 9360												
65 22150 13950 10000 65 12150 9900 18000 65 1900 2000 3150 83 13480 14840 9640 83 14960 11400 15280 83 2320 3080 3120 69 12250 8400 10900 69 10800 4450 13150 69 1800 1700 3350 1 20800 18450 22300 1 17500 16500 17050 1 4650 2400 3250 27 20120 19360 27840 27 9800 20960 22160 27 2800 3600 4200 85 7760 9360 9840 85 7760 9040 10920 85 4360 3800 3680 9 16150 12850 10700 9 13800 8750 14350 9 3050 2500 2500 67 13680 11320	56	14760	20640	16560	56	9040	11520	15040	56	2120	2400	2920
83 13480 14840 9640 83 14960 11400 15280 83 2320 3080 3120 69 12250 8400 10900 69 10800 4450 13150 69 1800 1700 3350 1 20800 18450 22300 1 17500 16500 17050 1 4650 2400 3250 27 20120 19360 27840 27 9800 20960 22160 27 2800 3600 4200 85 7760 9360 9840 85 7760 9040 10920 85 4360 3800 3680 9 16150 12850 10700 9 13800 8750 14350 9 3050 2500 2500 67 13680 11320 14000 67 8640 6320 8120 67 1880 2600 2080												
69 12250 8400 10900 69 10800 4450 13150 69 1800 1700 3350 1 20800 18450 22300 1 17500 16500 17050 1 4650 2400 3250 27 20120 19360 27840 27 9800 20960 22160 27 2800 3600 4200 85 7760 9360 9840 85 7760 9040 10920 85 4360 3800 3680 9 16150 12850 10700 9 13800 8750 14350 9 3050 2500 2500 67 13680 11320 14000 67 8640 6320 8120 67 1880 2600 2080												
27 20120 19360 27840 27 9800 20960 22160 27 2800 3600 4200 85 7760 9360 9840 85 7760 9040 10920 85 4360 3800 3680 9 16150 12850 10700 9 13800 8750 14350 9 3050 2500 2500 67 13680 11320 14000 67 8640 6320 8120 67 1880 2600 2080												
85 7760 9360 9840 85 7760 9040 10920 85 4360 3800 3680 9 16150 12850 10700 9 13800 8750 14350 9 3050 2500 2500 67 13680 11320 14000 67 8640 6320 8120 67 1880 2600 2080	1	20800	18450	22300	1	17500			1	4650	2400	3250
9 16150 12850 10700 9 13800 8750 14350 9 3050 2500 2500 67 13680 11320 14000 67 8640 6320 8120 67 1880 2600 2080												
67 13680 11320 14000 67 8640 6320 8120 67 1880 2600 2080												
<u>66 21300 18400 12600 66 9400 18500 14900 66 2900 4200 2800</u>	67	13680	11320	14000		8640	6320	8120		1880	2600	2080
	66	21300	18400	12600	66	9400	18500	14900	66	2900	4200	2800

ANNEX VIII Analysts results

Analyst	Linguloc	dinium po	lyedrum	Analyst	paralia	i sulcata (d	cells/L)	Analyst	Dytilum E	Brightwellii	(cells/L)
Code	sample 1	(cells/L) sample 2	sample 3	Code	sample 1	sample 2	sample 3	Code	sample 1	. sample 2 s	sample 3
12	4200			12		15880	14080	12	1400		720
88 64	6000 6360	6720 6760		88 64	1880 4720	9800 12760	11640 11720	88 64	1520 2680		2280 1120
19	7360	6120		19	15720	13320	22560	19	3400		3760
42	7640	3440		42	33280	30960	8840	42	3200		2600
62 80	5560 5800	7240 7000		62 80	19760 14720	22480 20840	25760 9680	62 80	3480 2880		2680 2800
5	6880			5		9920	14600	5	4200		4440
41	5760	7440		41	13840	7440	8880	41	5080		3200
60 89	6200 7920	6500 7880		60 89	5850 11320	15400 19440	10200 25960	60 89	2650 4080		1650 3400
75	7800	6600		75	11600	8400	19200	75	2600		1800
49	7161	7696		49	14472	12802	9895	49	3059		2864
81 68	4320 5280	6240 5600		81 68	6520 8320	18640 6840	11680 10720	81 68	960 2680		560 2680
10	8400	8320		10	14680	19480	23560	10	1240		2080
6	1738			6	132088	31775	NR	6	1738		NR
61	7120 5400			61 23	13600	21360 12040	9160	61	1120 1640		3160 1040
23 11	1280	6040 2200			19720 NR	12040 NR	22560 NR	23 11	1640		5320
86	3080	3920			NR	NR	NR	86	2960		80
17	6960	6720		17	0	12240	15440	17	0		200
16 3	5560 7240	4480 5640		16 3	NR 12520	NR 6960	NR 6800	16 3	120 3120		1680 1920
24	6800	4000	6300	24	3800	11500	32600	24	3200		2600
72	6520			72		14560	10680	72	3280		3760
2 14	6412 6720	6870 7000		2 14	11200 22800	12400 8680	11720 12880	2 14	2600 2960		3040 3400
26	3640	2960		26		10680	9600	26	1320		720
21	8479	7218	7087	21	16827	10653	18870	21	5000) 2870	478
18 38	8174 5696	7131 6826	7479 8783	18 38	11783 15001	16218 12827	20653 17305	18 38	2435 2826		2957 1130
50	5000			50	13520	14080	9720	50	2040		3200
44	2480			44	5640	11600	4160	44	2400		2160
48	7040	7400		48	4480	16840	29440	48	3840		2800
32 13	2400 6400	2560 4560		32 13		12960 6200	4560 6280	32 13	400 2240		560 920
39	7560			39	11640	9320	11320	39	3040		1560
54	7700	7623		54	4813	4312	10164	54	3157		3427
30 58	7038 5846	5769 5885	7615	30 58	6500 8808	8846 19692	19654 9692	30 58	3731 3808		3192 2923
87	7654	6654		87	8692	12423	17885	87	3654		5346
59	5360			59		30800	7920	59	480		1440
31 70	5500 6400	5300 7500		31 70	7300 6500	27700 4200	2500 15300	31 70	4500 2100		2600 2500
22	7000	8800		22	17700	19700	8800	22	2800		500
79	7000			79	16900	21600	8100	79	3400) O	100
45 47	6700 5700			45 47	12300 10400	13000 18900	15700 15700	45 47	2000 2300		2500 1700
33	3600	5900		33	18700	11800	16300	33	400		1100
29	3000	4400		29	5300	7600	8400	29	1400		1100
37	5900	6800		37	15000	13900	12000	37	2100		800
53 20	9900 9900			53 20		15200 9900	12900 12100	53 20	1200 100		2900 1100
28	6550			28		16800	7800		NR	200	1100
35	5200					4040	11000	35	2540		1260
25 7	NR 7120	NR 5360	NR 4000	25 7		NR 16160	NR 7120	25 7	2520 3040		900 1920
, 52	6460			, 52		5780	7820	, 52	4080		3120
82	4720			82	16960	12160	13760	82	3360		2320
71 40	6880 6400			71 40		23040 16600	10680 14880	71 40	920 1040		2720 2480
40 43	3080			40		33480	14880	40	1040		4040
4	2480	2600	3880	4	9840	8720	10880	4	2320	2480	2680
15	6300 6900	5900 5800		15		5050 22750	4284	15	1950		3570 2700
55 36	6900 7140			55 36		22750 1519	10000 2600	55 36	3550 1479		3950
8	9536	11237	10728	8	18960	15800	15920	8	3280	3720	2120
63 76	9160			63		17320	12880	63	5400		2560
76 51	6000 7400	4840 6600		76 51		6040 10400	24320 16440	76 51	2000 3520		1880 3720
77	6800			77		22560	12320	77	2680		2640
84	3880			84		12000	10120	84	1880		2760
56 78	7400 8300	7320 7700		56 78	24040 3400	9360 18200	18240 7000	56 78	1640 1900		2080 5000
65	7300			65		25400	8450	65	1900		3050
83	6560	5760	6680	83	30000	5280	11080	83	4160	3280	3760
69 1	6550 8450			69 1		4350	19400	69 1	3350		4150
1 27	8450 5840	7600 8320		1 27		20300 13360	25600 9720	1 27	2300 2840		2850 2640
85	5160			85		20600	26120	85	3400		2560
9	5900			9		14250	15550	9	4100		3650
67 66	3560 4800	3920 6900		67 66		3000 3800	17000 21200	67 66	1200 3200		2840 4400
	4800	0900	4000	00	2100	3800	21200	00	3200	3800	4400

ANNEX VIII Analysts results

Analyst	Coscinod	iscus grani	i(cells/L)	Analyst	Guinardia	delicatula	(cells/L)	Analyst	Α	sterio		opsis gr	acia	lis
Code	sample 1	sample 2	sample 3	Code	sample 1	sample 2	sample 3	Code	can	anle 1		lls/L) 1ple 2	cam	nlo 3
12	1520	1120	1400	12	3200	3920	5160	12	NR	ipie 1	NR		NR	pie 5
88	1120	1560	1440	88	3440	9200	7440		NR		NR		NR	
64	1800	1600	1880	64	4400	4200	6640	64	NR		NR	1	NR	
19	1840	1480	1360	19	2760	5200	6840	19		600		160		0
42	2400	2320	1440	42	5920	5280	5480	42		120		0		0
62 80	2000 2040	1200 1520	1360 1840	62 80	7200 5760	6440 6360	3960 6880	62 80		0		120 0		1520 120
5	1680	2120	1480	5	4800	5880	8400		NR	0	NR		NR	120
41	1600	1480	1600	41	6920	6600	9720		NR		NR		NR	
60	2250	1650	1250	60	7050	14900	8800	60	NR		NR	1	NR	
89	1520	1680	2240	89	6960	7000	9200	89		0		160		120
75	2200	2400	3200	75	4000	9200	7800		NR		NR		NR	2020
49 81	1790 1800	1739 1720	1488 1480	49 81	6042 2200	7770 5360	8407 3800	49 81	NR	0	NR	148	NR	2939
68	1280	960	1480	68	5760	6480	6880		NR		NR		NR	
10	1920	1880	1520	10	2000	4120	8840		NR		NR		NR	
6	5214	1765	3527	6	8690	1765	3527	6	NR		NR	1	NR	
61	2320	1800	1720	61	1800	7600	8080	61		80		40		0
23	1640	1600	1560	23	3240	5920	5120		NR		NR		NR	
11	1160	1800	1320	11	1480	880	2480		NR		NR		NR	
86 17	1440 1720	2280 1720	2000 1600	86 17	2440 4480	1720 1600	3200 3440	86 17	NR	360	NR	0	NR	0
16	1520	1400	1560	16	1720	3280	1960		NR	500	NR		NR	0
3	1360	1040	1600	3	4720	3280	8120		NR		NR		NR	
24	1400	1400	1900	24	3800	4000	2800		NR		NR		NR	
72	1880	1000	1720	72	3920	4560	7640		NR		NR		NR	
2 14	1760 1760	1720	1520	2	4800	4520 3920	4640 4520				NR			
14 26	1760 1440	1920 1360	1680 1320	14 26	2520 2800	3920 2680	4520 3200		NR NR		NR NR		NR NR	
20	1826	1391	1391	20	4435	5392	6565	20		174	. en	130		87
18	1913	2044	1652	18	5826	6305	5826	18		87		43		0
38	1478	2000	1522	38	4522	1391	5870	38		217		2391		609
50	1520	1440	1480	50	3440	3880	6840	50		280		0		0
44 48	1560 1720	1440 1680	1280 1800	44 48	4240 6000	1920 4200	4000 4680		NR NR		NR NR		NR	
32	1720	1680	1120	32	1520	1280	4680 1440		NR		NR		NR NR	
13	1960	1560	1760	13	2360	4920	3600	13		40		120		200
39	1640	1400	1600	39	5960	6320	7920		NR		NR		NR	
54	1964	1579	1540	54	5852	5583	6699		NR		NR		NR	
30	1115	1308	1692	30	7500	3962	8962	30		0		808		0
58 87	885 1423	1808 1923	1000 1885	58 87	5808 6462	4808 4269	1615 3038	58 87		462 0		77 38		0
59	1640	1925	1120	59	3160	3240	3120		NR	0	NR		NR	0
31	1600	1100	2400	31	3900	5000	3400	31		200		0		0
70	1200	1400	2100	70	4700	1600	2700	70	NR		NR		NR	
22	2400	2100	2200	22	7500	9700	1900		NR		NR		NR	
79	2300	1800	1800	79	4200	7300	7700		NR	100	NR		NR	0
45 47	1600 1500	2000 2000	1300 1900	45 47	5800 4300	7200 9500	5600 4300	45 47		100 200		300 900		0 1400
33	1400	1100	1900	33	4900	3200	2300	33		500		0		0
29	1000	1700	900	29	1900	2100	1400		NR		NR	1	NR	
37	1400	1300	1600	37	4400	4800	6600	37		0		0		900
53	1400	1200	1600	53	4200	7500	7100		NR		NR		NR	
20		2300	1600	20	1000	3200	2300				NR		NR	400
28 35	1200 1800	1450 1920	1350 1700	28 35	1500 6180	4100 4480	250 6720		NR NR		NR NR		NR	400
25	1480	1600	1600	25	4320	7600	4600		NR		NR		NR	
7		1280	1320	7	4160	3440	1680		NR		NR		NR	
52	2040	1120	1680	52	8840	6120	9180	52	NR		NR	1	NR	
82	2320	1360	1600	82	2880	6800	8000		NR		NR		NR	
71	1360 1360	2040	1880 1720	71	6080 1360	5480 5560	3520 4800							
40 43	1360 800	1680 1360	1720 1880	40 43	1360 3200	5560 3680	4800 5400		NR NR		NR NR		NR NR	
43	1880	1680	1760	43	5800	4880	4400		NR		NR		NR	
15	1800	1200	1632	15	7150	5500	8313		NR		NR		NR	
55	1200	1700	1050	55	2300	5000	7050	55		50		50		250
36		1617	2450	36	3264	2744	5200		NR	-	NR		NR	
8	1520 1880	1840	1520	8	9400	7640	9080	8		360 520		160 720		640 320
63 76	1880 1280	1520 1360	1760 1520	63 76	9160 7680	8960 4680	9560 4960	63 76		520 280		720 440		320 240
51	1600	1640	1880	51	11080	8680	6720	51		1280		560		320
77		1640	1680	77	7920	6600	6920		NR		NR		NR	
84	1880	1920	1480	84	4480	4200	4040	84	NR		NR	1	NR	
56	1960	1560	1640	56	4480	2880	9280	56		80		1320		120
78	1300	1700	1600	78	5100	7900	6000		NR		NR		NR	
65 83	1800 1360	2200 1800	1350 1480	65 83	3700 10120	3800 4760	9600 8240		NR NR		NR NR		NR NR	
69	1750	2050	2500	69	3750	2500	8240 8950		NR		NR		NR	
1	1600	1750	2700	1	5600	11450	9400		NR		NR		NR	
27	1400	1560	1960	27	5280	10080	12320		NR		NR	1	NR	
85	1720	1800	1400	85	3240	2800	3360	85		280		0		0
9	2050	1450	1650	9	3200	3050	4850		NR		NR		NR	
67 66	1200 2500	1200 1500	1280 1400	67 66	2520 3300	4760 8200	6520 7000	67 66	NR	500	NR	ا 200	NR	100
00	2300	1300	1400	00	3300	8200	7000	00		500		200		100

Annex IX: Robust mean and Standard deviation calculation according to algorithm A annex C ISO13528

Scrippsiella iteration

ANALYST COD	Average 🖵	X-X*	X*i	it2	it3	it4	it5
58	5320	12296	6731	7344	7379	7383	738
32 52	7227	10390 9750	7227 7867	7344 7867	7379 7867	7383 7867	738
11	8053	9563	8053	8053	8053	8053	805
4	8240	9377	8240	8240	8240	8240	824
84	8987	8630	8987	8987	8987	8987	898
85 51	8987 9093	8630 8523	8987 9093	8987 9093	8987 9093	8987 9093	898 909
88	9360	8257	9360	9360	9360	9360	936
82	9400	8217	9400	9400	9400	9400	940
16	10000	7617	10000	10000	10000	10000	1000
29 69	10167 10517	7450 7100	10167 10517	10167 10517	10167 10517	10167 10517	1016
6	10544	7072	10544	10544	10544	10544	1054
30	10718	6899	10718	10718	10718	10718	1071
54	11063	6554	11063	11063	11063	11063	1106
42	11427	6190	11427	11427	11427	11427	1142 1250
24 83	12500 12653	5117 4963	12500 12653	12500 12653	12500 12653	12500 12653	1250
7	12933	4683	12933	12933	12933	12933	1293
67	13000	4617	13000	13000	13000	13000	1300
9	13233	4383	13233	13233	13233	13233	1323
19 75	13573 14200	4043 3417	13573 14200	13573 14200	13573 14200	13573 14200	1357 1420
64	14573	3043	14573	14573	14573	14573	1457
55	14583	3033	14583	14583	14583	14583	1458
40	14653	2963	14653	14653	14653	14653	1465
80 72	15187	2430	15187	15187	15187	15187	1518
72 65	15281 15367	2335 2250	15281 15367	15281 15367	15281 15367	15281 15367	1528 1536
48	16093	1523	16093	16093	16093	16093	1609
15	16439	1177	16439	16439	16439	16439	1643
26	16613	1003	16613	16613	16613	16613	166
87 86	16680	937	16680 16827	16680 16827	16680	16680	1668
28	16827 16850	790 767	16827 16850	16827	16827 16850	16827 16850	1682 1685
25	16987	630	16987	16987	16987	16987	1698
50	17027	590	17027	17027	17027	17027	1702
76	17093	523	17093	17093	17093	17093	1709
23 56	17227 17320	390	17227 17320	17227 17320	17227 17320	17227 17320	1722 1732
66	17433	297 183	17433	17433	17433	17433	173
12	17800	183	17800	17800	17800	17800	1780
60	17883	267	17883	17883	17883	17883	1788
36	17928	311	17928	17928	17928	17928	1792
61	18173	557	18173	18173	18173	18173	1817
41 49	18200 18539	583 922	18200 18539	18200 18539	18200 18539	18200 18539	1820 1853
44	18560	943	18560	18560	18560	18560	1856
62	18587	970	18587	18587	18587	18587	1858
3	19187	1570	19187	19187	19187	19187	1918
39 5	19280 19747	1663 2130	19280 19747	19280 19747	19280 19747	19280 19747	1928 1974
1	20517	2900	20517	20517	20517	20517	205
8	20603	2987	20603	20603	20603	20603	206
13	20680	3063	20680	20680	20680	20680	206
18	20813	3196	20812	20812	20812	20812	208
21 81	21131 21693	3514	21131 21693	21131 21693	21131 21693	21131 21693	211 216
63	22200	4077 4583	22200	22200	22200	22200	222
27	22440	4823	22440	22440	22440	22440	224
35	22693	5077	22693	22693	22693	22693	226
14	22848	5231	22848	22848	22848	22848	228
2 78	23053 23233	5436 5617	23053 23233	23053 23233	23053 23233	23053 23233	230 232
78	23233	5906	23523	23233	23523	23233	232
43	23680	6063	23680	23680	23680	23680	236
47	24133	6517	24133	24133	24133	24133	241
77	24667	7050	24667	24667	24667	24667	246
22 31	25667 26067	8050 8450	25667 26067	25667 26067	25667 26067	25667 26067	256 260
70	26100	8483	26100	26100	26100	26100	261
38	26479	8863	26479	26479	26479	26479	264
10	26893	9277	26893	26893	26893	26893	268
53 59	27500 29147	9883 11530	27500 28502	27500 28502	27500 28502	27500 28502	275
89	30480	12863	28502	28502	28502	28502	285
37	31733	14117	28502	28502	28502	28502	285
17	32107	14490	28502	28502	28502	28502	285
33 45	32933 34600	15317 16983	28502 28502	28502 28502	28502 28502	28502 28502	285
45 68	34600	16983 17179	28502	28502	28502	28502	285
79	37133	19517	28502	28502	28502	28502	285
20	39133	21517	28502	28502	28502	28502	285
verage X	18617		18092	18101	18101	18102	181
D S	7432	DOW V*	6318	6303	6302	6301	63
obust average X* obust stdev S*		new X* new S*	18092 7165	18101 7148	18101 7146	18102 7146	181 71
= 1.5 <i>S</i> *	10885	-	10747	10721	10719	10719	107
(*-δ	6731		7344	7379	7383	7383	73
(*+δ	28502		28839	28822	28820	28820	288
no of analysts P	84		84	84	84	84	
Between Samples SD	.046	From homoge	eneitytest				

		• · · · · · · · · · · · · · · · · · · ·	V*:	:+2	:+-2	:+4
	Averae - 5253		X*i 8833	it2 8541	it3 8440	it4 8440
5	6802	2 6258	8833	8541	8440	8440
2	6 716			8541	8440	8440
e	7 7640 7 7693		8833 8833	8541 8541	8440 8440	8440 8440
	6 819			8541	8440	8440
6	8 832			8541	8440	8440
	4 8760			8541	8440	8440
	.9 878			8541	8440	8440
	4 8973 5 9140		8973 9140	8973 9140	8973 9140	8973 9140
	5 9240			9240	9240	9240
	9 946			9467	9467	9467
	2 965			9653	9653	9653
	4 973		9733	9733	9733	9733
	.6 9813 7 10209		9813 10205	9813 10205	9813 10205	9813 10205
	0 1031			10205	10205	10205
	4 10520			10520	10520	10520
	1 1069		10693	10693	10693	10693
	1 1100			11000	11000	11000
	1 1106 1 11200			11067 11200	11067 11200	11067 11200
	8 11474			11474	11474	11474
	6 11630			11636	11636	11636
6	11680			11680	11680	11680
	5 1173		11733	11733	11733	11733
	9 11800 3 11800			11800 11800	11800 11800	11800 11800
	3 11800 1 11833		11800	11800	11800	11800
	6 1186			11867	11867	11867
	1194	7 1113		11947	11947	11947
6	1 12013		12013	12013	12013	12013
F	9 12300 0 1242			12300	12300	12300
	0 1242 0 12500		12427 12500	12427 12500	12427 12500	12427 12500
	0 12552			12552	12552	12552
2	4 1256		12567	12567	12567	12567
	8 1256			12567	12567	12567
	8 12928			12928	12928	12928
	3 13000 8 13040			13000 13040	13000 13040	13000 13040
	.0 13080			13080	13080	13080
1	.3 1314	7 87	13147	13147	13147	13147
	7 13200			13200	13200	13200
	0 13320 5 13333			13320	13320	13320
	5 1333 0 1333			13333 13333	13333 13333	13333 13333
	13350			13350	13350	13350
5	5 1341		13417	13417	13417	13417
	5 1343			13433	13433	13433
	3 13533 6 13623		13533 13627	13533	13533	13533 13627
	1302			13627 13707	13627 13707	13707
	9 1374		13747	13747	13747	13747
2	3 1378	7 727	13787	13787	13787	13787
	3 13880			13880	13880	13880
	9 1390 4 1391		13907 13917	13907	13907 13917	13907 13917
	3 1414		14147	13917 14147	14147	14147
L	8 14200			14200	14200	14200
6	6 1426	7 1207	14267	14267	14267	14267
	2 1488			14885	14885	14885
	7 14907 5 15000			14907 15000	14907 15000	14907 15000
	.5 15014			15014	15014	15014
1	.7 15040			15040	15040	15040
	2 1505			15053	15053	15053
	9 15310			15310	15310	15310
	2 1536 7 1553			15367 15533	15367 15533	15367 15533
	1 15740			15740	15740	15740
7	2 15809	2749	15809	15809	15809	15809
	1 15920			15920	15920	15920
	2 1604			16047	16047	16047
	.8 16276 9 16567			16276 16567	16276 16567	16276 16567
	i 16680			16680	16680	16680
	1 1701	7 3957	17017	17017	17017	17017
	1 1712			17101	17101	17101
	1743			17101	17101	17101
	7 17640 9 18400			17101 17101	17101 17101	17101 17101
c	8 20253			17101	17101	17101
Average X	12746	5	12821	12780	12770	12770
SD S	2875		2516	2551	2570	2570
robust average X* robust stdev S*		0 new X* 3 new S*	12821 2853	12780 2893	12770 2914	12770 2914
δ= 1.5 <i>S</i> *	422		4280	4340		
Χ*- δ	8833		8541	8440	-	8398
Χ*+δ	1728		17101	17120	17141	17141
no of analysts P	84		84	84	84	84
Between Samples SD		riom nom	nogeneity t	esi		

Annex IX: Prorocentrum micans iteration

Between Samples SD 389 From homogeneity test

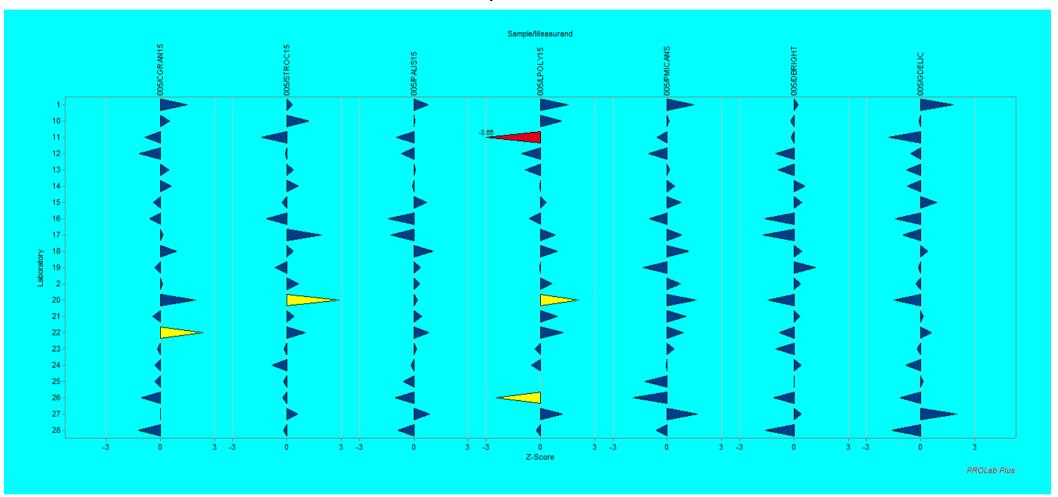
ANALYST CODF		Avera		X*i 1202	it2
	81 16	533 827	1917 1623	1393 1393	1393 1393
	17	1027	1423	1393	1393
	32	1120	1330	1393	1393
	26	1293	1157	1393	1393
	79	1333	1117	1393	1393
	11	1400	1050	1400	1400
	3 40	1400 1453	1050 997	1400 1453	1400 1453
	28	1453	983	1453	1455
	29	1567	883	1567	1567
	12	1707	743	1707	1707
	60	1717	733	1717	1717
	44	1733	717	1733	1733
	58	1795	655	1795	1795
	25 7	1820 1867	630 583	1820 1867	1820 1867
	62	1933	517	1933	1933
	86	1947	503	1947	1947
	61	1987	463	1987	1987
	38	2058	392	2058	2058
	4	2067	383	2067	2067
	64	2120	330	2120	2120
	48 50	2160 2187	290 263	2160 2187	2160 2187
	67	2187	263	2187	2187
	47	2267	183	2267	2267
	33	2267	183	2267	2267
	59	2280	170	2280	2280
	69	2283	167	2283	2283
	78 24	2300 2333	150 117	2300 2333	2300 2333
	37	2333	117	2333	2333
	35	2347	103	2347	2347
	82	2347	103	2347	2347
	65	2350	100	2350	2350
	30	2359	91	2359	2359
	80	2360	90	2360	2360
	70 54	2367 2412	83	2367 2412	2367 2412
	14	2412	37	2412	2412
	45	2413	17	2413	2413
	88	2467	17	2467	2467
	5	2467	17	2467	2467
	56	2480	30	2480	2480
	10	2560	110	2560	2560
	76	2560	110	2560	2560
	89 13	2613 2613	163 163	2613 2613	2613 2613
	9	2683	233	2683	2683
	68	2720	270	2720	2720
	23	2720	270	2720	2720
	31	2733	283	2733	2733
	20	2733	283	2733	2733
	39	2747	297	2747	2747
	83 43	2840 2867	390 417	2840 2867	2840 2867
	84	2867	417	2867	2867
	51	2880	430	2880	2880
	2	2893	443	2893	2893
	55	2917	467	2917	2917
	75	2933	483	2933	2933
	19 49	2947 2961	497	2947 2961	2947 2961
	71	2961	511 523	2961	2961
	77	3027	577	3027	3027
	21	3029	579	3029	3029
	63	3067	617	3067	3067
	36	3269	819	3269	3269
	8	3293	843	3293	3293
	66	3300	850	3300	3300
	41 72	3307 3333	857 883	3307 3333	3307 3333
	15	3336	886	3336	3336
	1	3433	983	3433	3433
	22	3467	1017	3467	3467
	27	3533	1083	3507	3507
	87	3602	1152	3507	3507
	53	3667	1217	3507	3507
	18 52	3739 3740	1289 1290	3507 3507	3507 3507
	85	3947	1497	3507	3507
	6	4679	2229	3507	3507
			3363	3507	3507
	42	5813			2404
Average X		2523		2494	2494
SD S		2523 832		648	648
SD S robust average X*		2523 832 2450	new X*	648 2494	648 2494
SD S robust average X* robust stdev S*		2523 832 2450 704	new X* new S*	648 2494 735	648 2494 735
SD S robust average X* robust stdev S* δ = 1.5S*		2523 832 2450 704 1057	new X* new S*	648 2494 735 1103	648 2494 735 1103
SD S robust average X* robust stdev S*		2523 832 2450 704	new X* new S*	648 2494 735	648 2494 735
SD 5 robust average X* robust stdev 5* $\delta = 1.5S^*$ X* - δ X* + δ no of analysts P		2523 832 2450 704 1057 1393	new X* new S*	648 2494 735 1103 1391	648 2494 735 1103 1391
SD S robust average X* robust stdev S* $\delta= 1.5S*$ X* - δ X* + δ		2523 832 2450 704 1057 1393 3507	new S*	648 2494 735 1103 1391 3597	648 2494 735 1103 1391 3597 84

Annex IX: P. australis iteration

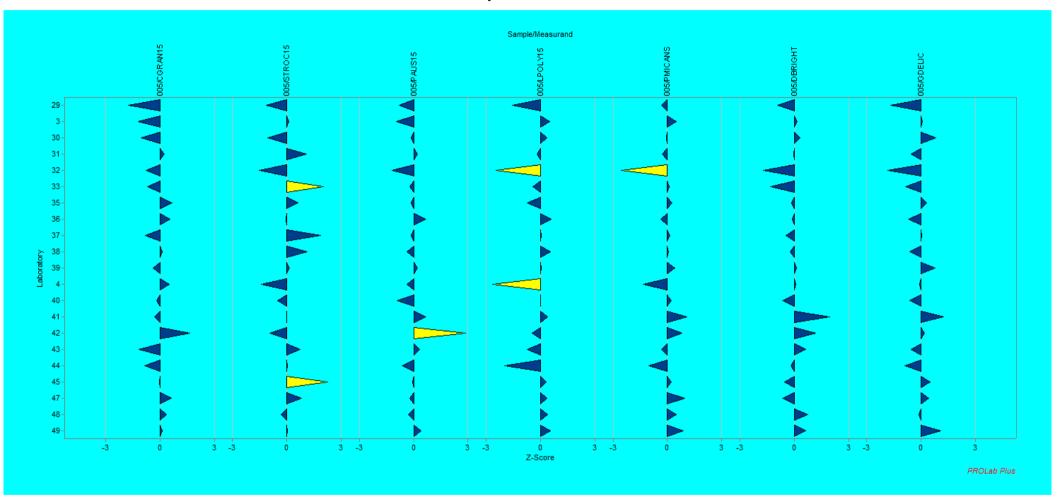
	_				
ANALYST CODE	11	Avera	X-X* 4760	<i>X*i</i> 4608	it2 4608
	6	2932	3508	4608	4608
	4	2987	3453	4608	4608
	32	3227	3213	4608	4608
	26	3240	3200	4608	4608
	67	3667	2773	4608	4608
	44 84	3827 4307	2613 2133	4608 4608	4608
	29	4367	2133	4608	4608
	86	4467	1973	4608	4608
	85	4800	1640	4800	4800
	12	5027	1413	5027	5027
	58	5039	1401	5039	5039
	9	5100	1340	5100	5100
	13 82	5253 5280	1187 1160	5253 5280	5253 5280
	76	5387	1053	5387	5387
	35	5413	1027	5413	5413
	43	5427	1013	5427	5427
	7	5493	947	5493	5493
	66	5500	940	5500	5500
	16	5587	853	5587	5587
	65	5617	823	5617	5617
	24 42	5700 5787	740 653	5700 5787	5700 5787
	33	5800	640	5800	5800
	52	5893	547	5893	5893
	23	5973	467	5973	5973
	81	6000	440	6000	6000
	28	6100	340	6100	6100
	31	6133	307	6133	6133
	64	6187	253	6187	6187
	62	6240	200	6240	6240
	88 14	6253 6307	187 133	6253 6307	6253 6307
	69	6317	123	6317	6317
	19	6320	120	6320	6320
	83	6333	107	6333	6333
	72	6387	53	6387	6387
	40	6400	40	6400	6400
	37	6433	7	6433	6433
	39	6440	0	6440	6440
	50	6533 6667	93 227	6533	6533 6667
	68 80	6707	267	6667 6707	6707
	60	6717	277	6717	6717
	55	6733	293	6733	6733
	45	6767	327	6767	6767
	15	6770	330	6770	6770
	30	6807	367	6807	6807
	77	6813	373	6813	6813
	47 41	6833 6853	393 413	6833 6853	6833 6853
	41	6853	413	6853	6853
	71	6920	480	6920	6920
	3	7013	573	7013	7013
	5	7067	627	7067	7067
	75	7067	627	7067	7067
	49	7073	633	7073	7073
	38 36	7102	662 663	7102	7102
	61	7103	667	7103	7103
	59	7107	667	7107	7107
	2	7175	735	7175	7175
	70		827	7267	7267
	51	7280	840	7280	7280
	79	7300	860	7300	7300
	87 17	7410	970 973	7410	7410
	21	7595	1155	7595	7595
1	18	7595	1155	7595	7595
	56	7627	1187	7627	7627
	78	7833	1393	7833	7833
	89	7853	1413	7853	7853
	10	7853	1413	7853	7853
	54	7867	1427	7867	7867
	27 22	7947 7967	1507	7947	7947 7967
	63	8320	1527 1880	7967 8272	8272
	1	8333	1893	8272	8272
	20		2627	8272	8272
	53		2693	8272	8272
	8		4060	8272	8272
	25	not id	not id	not id	not id
Average X		6320		6409	6409
SD S		1471	BOW V*	1084	1084
robust average X* robust stdev S*			new X* new S*	6440 1229	6440 1229
$\delta = 1.5S^*$		1832		1229	1229
0- 1.33 X*- δ		4608		4596	4596
X*+ δ		8272		8284	8284
		83		83	83
no of analysts P		63		63	05
no of analysts <i>P</i> Between Samples SD new stdev for L.polye			371 1284	From hom	

Annex IX: Lingulodinium polyedrum iteration

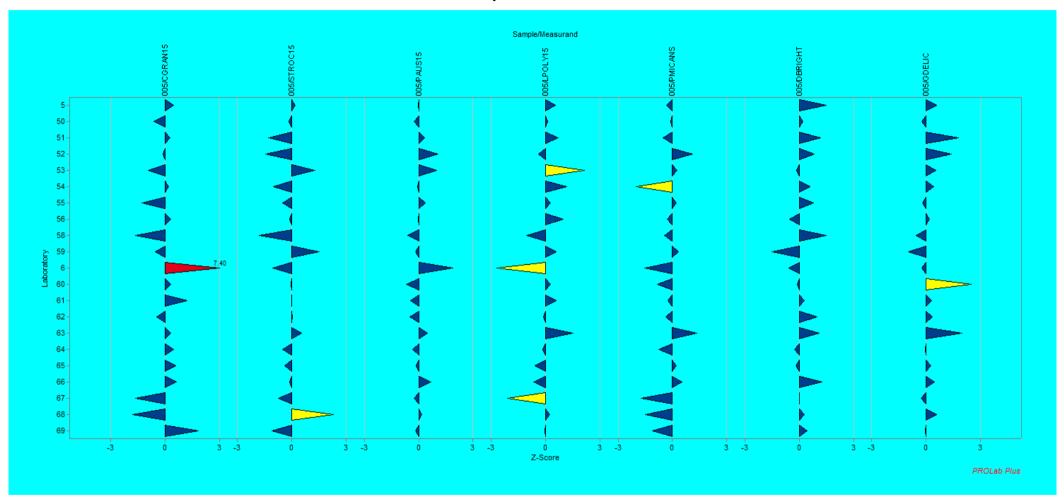
		•		
ANALYST COD	Avera		X*i	it2
17	507	1967	1068	1068
32	533	1940	1068	1068
16	613	1860	1068	1068
28	650	1823	1068	1068
81 59	733	1740 1740	1068 1068	1068
20	833	1640	1068	1068
33	933	1540	1068	1068
86	1053	1420	1068	1068
79	1167	1307	1167	1167
26	1173	1300	1173	1173
12	1293	1180	1293	1293
23 29	1307 1367	1167 1107	1307 1367	1307 1367
13	1427	1047	1427	1427
22	1500	973	1500	1500
71	1613	860	1613	1613
40	1667	807	1667	1667
47	1700	773	1700	1700
70	1733	740	1733	1733
6	1752	722	1752	1752
76	1773	700	1773	1773
56	1800	673	1800	1800
45	1833	640	1833	1833
37 75	1900 2067	573 407	1900 2067	1900 2067
64	2133	340	2133	2087
38	2133	300	2133	2174
44	2200	273	2200	2200
10	2213	260	2213	2213
65	2217	257	2217	2217
11 	2227	247	2227	2227
53 35	2233 2247	240 227	2233 2247	2233
36	2300	174	2300	2300
60	2300	173	2300	2300
88	2307	167	2307	2307
31	2367	107	2367	2367
67	2400	73	2400	2400
25	2407	67	2407	2407
82	2427 2453	47 20	2427 2453	2427 2453
7	2493	20	2493	2493
4	2493	20	2493	2493
39	2560	87	2560	2560
84	2560	87	2560	2560
3	2573	100	2573	2573
50	2627	153	2627	2627
1 61	2667 2720	193 247	2667 2720	2667
68	2733	260	2733	2733
85	2747	273	2747	2747
30	2756	283	2756	2756
21	2783	309	2783	2783
2	2813	340	2813	2813
27	2827	353	2827	2827
24 15	2833 2873	360 400	2833 2873	2833
18	2884	411	2884	2884
69	2900	427	2900	2900
80	3027	553	3027	3027
8	3040	567	3040	3040
14	3053	580	3053	3053
54 43	3080 3093	607 620	3080 3093	3080
43	3093	623	3093	3093
48	3253	780	3253	3253
55	3300	827	3300	3300
72	3307	833	3307	3307
52	3307	833	3307	3307
62	3493	1020	3493	3493
89 63	3533 3640	1060 1167	3533 3640	3533
19	3720	1247	3720	3720
42	3720	1247	3720	3720
51	3720	1247	3720	3720
83	3733	1260	3733	3733
66	3800	1327	3800	3800
9	3817	1343 1398	3817 3872	3817
	3872 3900	1398	3872	3872
87			3878	3878
87 78		1565		
87	4039 4040	1565 1567	3878	3878
87 78 58	4039			
87 78 58 5 41 Average X	4039 4040 4573 2432	1567	3878 3878 2455	3878 2455
87 78 58 5 41 Average X 5D <i>S</i>	4039 4040 4573 2432 952	1567 2100	3878 3878 2455 865	3878 2455 865
87 78 58 5 41 Average X 50 S robust average X*	4039 4040 4573 2432 952 2473	1567 2100 new X*	3878 3878 2455 865 2473	3878 2455 865 2473
87 78 58 5 41 Average X 5D S robust average X* robust stdev S*	4039 4040 4573 2432 952 2473 937	1567 2100	3878 3878 2455 865 2473 981	3878 2455 865 2473 981
87 78 58 541 Average X $50 S$ Tobust average X* Tobust stdev S* $5=1.5S*$	4039 4040 4573 2432 952 2473 937 937 1405	1567 2100 new X*	3878 3878 2455 865 2473 981 1471	3878 3878 2455 865 2473 981 1471 1002
87 78 58 5 41 Average X 5D S robust average X* robust stdev S*	4039 4040 4573 2432 952 2473 937	1567 2100 new X*	3878 3878 2455 865 2473 981	3878 2455 865 2473 981
87 78 58 541 Average X $50 S$ Tobust average X* Tobust stdev S* $5= 1.55*$ $(*-\delta)$	4039 4040 4573 2432 952 2473 937 1405 1068	1567 2100 new X*	3878 3878 2455 865 2473 981 1471 1002 3944 84	3878 2455 2473 2473 981 1471 1002

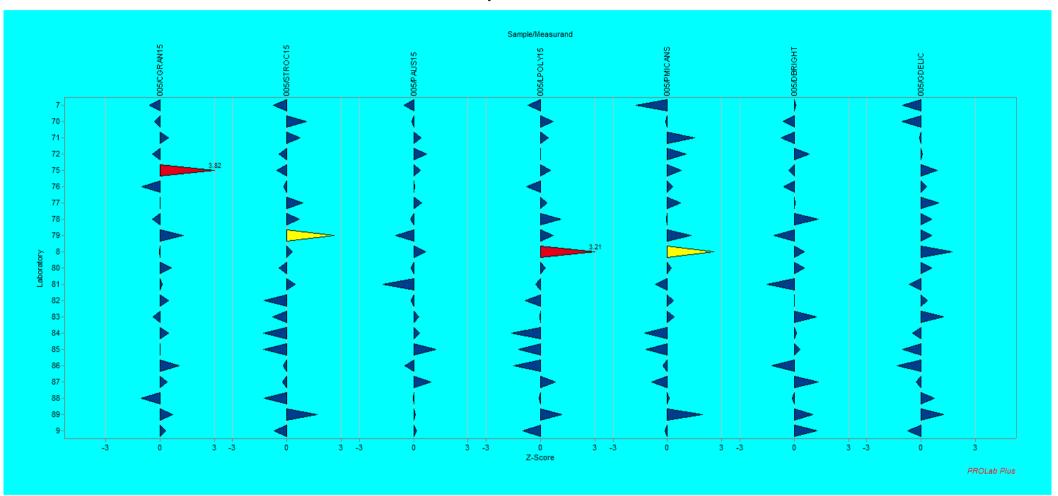

Annex IX: Ditylum brightwellii iteration

		0		
ANALYST COD	Avera	X-X*	X*i	it2
68	1187	453	1343	134
29	1200	440	1343	134
67	1227	413	1343	134
58	1231	409	1343	134
55	1317	323	1343	134
3	1333	307	1343	134
28	1333	307	1343	134
12	1347	293	1347	134
43	1347	293	1347	134
30	1372	268	1347	134
88	1373	267	1373	137
26 76	1373 1387	267 253	1373	137
53	1400	233	1387 1400	138
11	1427	213	1427	142
44	1427	213	1427	142
37	1433	207	1433	143
32	1440	200	1440	144
33	1467	173	1467	146
50	1480	160	1480	148
16	1493	147	1493	149
7	1493	147	1493	149
59	1507	133	1507	150
62	1520	120	1520	150
72	1533	107	1533	152
72	1533	107	1533	153
21	1536	104	1536	153
15	1544	96	1544	154
39	1547	93	1547	154
83	1547	93	1547	154
19	1560	80	1560	156
41	1560	80	1560	156
25	1560	80	1560	156
24	1567	73	1567	156
70	1567	73	1567	156
40	1587	53	1587	158
23	1600	40	1600	160
52	1613	27	1613	161
8	1627	13	1627	162
45	1633	7	1633	163
77	1640	0	1640	164
27	1640	ō	1640	164
85	1640	0	1640	164
81	1667	27	1667	166
2	1667	27	1667	166
38	1667	27	1667	166
49	1672	32	1672	167
17	1680	40	1680	168
54	1694	54	1694	169
31	1700	60	1700	170
51	1707	67	1707	170
60	1717	77	1717	171
9	1717	77	1717	171
63	1720	80	1720	172
56	1720	80	1720	172
48	1733	93	1733	173
87	1744	104	1744	174
64	1760	120	1760	176
5	1760	120	1760	176
13	1760	120	1760	176
82	1760	120	1760	176
71	1760	120	1760	176
84	1760	120	1760	176
10	1773	133	1773	177
4	1773	133	1773	177
36	1781	141	1781	178
65	1783	143	1783	178
14	1787	147	1787	178
80	1800	160	1800	180
47	1800	160	1800	180
66	1800	160	1800	180
35	1807	167	1807	180
89	1813	173	1813	181
18	1870	230	1870	187
86	1907	267	1907	190
61	1947	307	1937	193
79	1967	327	1937	193
1	2017	377	1937	193
42	2053	413	1937	193
69	2100	460	1937	193
20	2133	493	1937	193
22	2233	593	1937	193
75	2600	960	1937	193
6	3502	1862	1937	193
verage X	1664		1633	163
D <i>S</i>	312		185	18
		new X*	1640	164
obust average X*		new S*	209	20
obust stdev S*				31
obust stdev <i>S*</i> = 1.5 <i>S*</i>	297		314	
obust stdev <i>S*</i> = 1.5 <i>S*</i> *- δ	297 1343		1326	132
bust stdev <i>S*</i> = 1.5 <i>S*</i> *- δ *+ δ	297 1343 1937		1326 1954	132 195
obust stdev <i>S*</i> = 1.5 <i>S*</i> *- δ	297 1343 1937 84	141	1326 1954 84	132


Annex IX: Coscinodiscus granii iteration

		_		
ANALYST COD	Avera	X-X*	X*i	it2
32	1413	3760	2511	251
11	1613	3560	2511	251
29	1800	3373	2511	251
28	1950	3223	2511	251
20	2167	3007	2511	251
16	2320	2853	2511	251
86	2453	2720	2511	251
26	2893	2280	2893	2893
70	3000	2173	3000	3000
7	3093	2080	3093	3093
85	3133	2040	3133	313
17	3173	2000	3173	317
59	3173	2000	3173	3173
44	3387	1787	3387	338
33	3467	1707	3467	346
24	3533	1640	3533	353
13	3627	1547	3627	362
14	3653	1520	3653	3653
9	3700	1473	3700	370
36	3736	1437	3736	373
81	3787	1387	3787	378
40	3907	1267	3907	390
38	3928	1246	3928	392
58	4077	1096	4077	407
12	4093	1080	4093	409
43	4093	1080	4093	409
31	4100	1073	4100	410
84	4240	933	4240	424
87	4590	584	4590	459
67	4600	573	4600	460
2	4653	520	4653	465
6	4661	513	4661	466
50	4720	453	4720	472
23	4760	413	4760	476
55	4783	390	4783	478
19	4933	240	4933	493
48	4960	213	4960	496
10	4987	187	4987	498
71	5027	147	5027	502
4	5027	147	5027	502
69	5067	107	5067	506
64	5080	93	5080	508
37	5267	93	5267	526
3	5373	200	5373	537
72	5373	200	5373	537
21	5464	291	5464	546
25	5507	333	5507	550
56	5547	373	5547	554
42	5560	387	5560	556
65	5700	527	5700	570
76	5773	600	5773	577
35	5793	620	5793 5827	579
61 62	5827 5867	653 693	5867	582 586
82	5893	720	5893	589
18	5986	812	5986	598
47	6033	860	6033	603
54	6045	871	6045	604
66	6167	993	6167	616
45	6200	1027	6200	620
53	6267	1093	6267	626
80	6333	1160	6333	633
78	6333	1160	6333	633
5	6360	1187	6360	636
22	6367	1193	6367	636
68	6373	1200	6373	637
79	6400	1227	6400	640
88	6693	1520	6693	669
39	6733	1560	6733	673
30	6808	1635	6808	680
15	6988	1814	6988	698
75	7000	1827	7000	700
77	7147	1973	7147	714
49	7406	2233	7406	740
83	7707	2533	7707	770
89	7720	2547	7720	772
41	7747	2573	7747	774
52	8047	2873	7835	783
8	8707	3533	7835	783
1	8817	3643	7835	783
51	8827	3653	7835	783
63	9227	4053	7835	783
27	9227	4053	7835	783
	10250	5077	7835	783
60	5241		5188	518
Average X			1610	161
Average X SD S	1885		5173	517
verage X 5D S obust average X*	1885 5173	new X*		
verage X D S obust average X* obust stdev S*	1885 5173 1775	new X* new S*	1826	
Verage X SD S obust average X* obust stdev S* S= 1.5S*	1885 5173 1775 2662		1826 2739	182 273
Noterage X D S obust average X* obust stdev S* s = 1.5S* (*- δ	1885 5173 1775 2662 2511		1826 2739 2434	273 243
Note that the second s	1885 5173 1775 2662 2511 7835		1826 2739 2434 7913	273 243 791
Noterage X D S obust average X* obust stdev S* s = 1.5S* (*- δ	1885 5173 1775 2662 2511 7835 84		1826 2739 2434 7913 84	273 243


Annex IX: Guinardia delicatula iteration


ANNEX X: Summary of Z-scores for all measurands

ANNEX X: Summary of Z-scores for all measurands

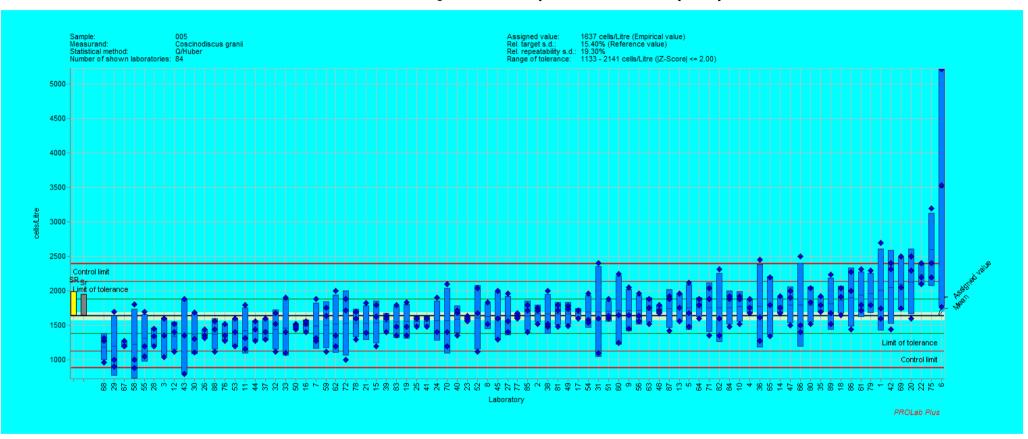
ANNEX X: Summary of Z-scores for all measurands

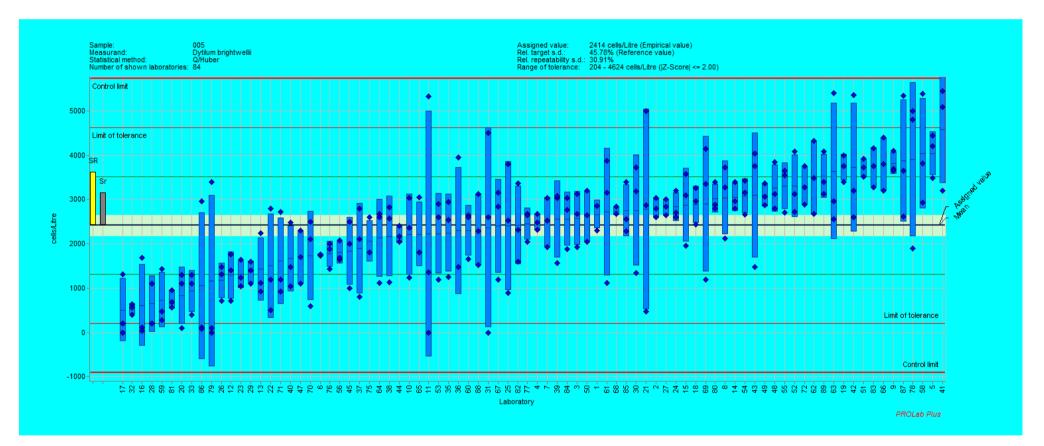
ANNEX X: Summary of Z-scores for all measurands

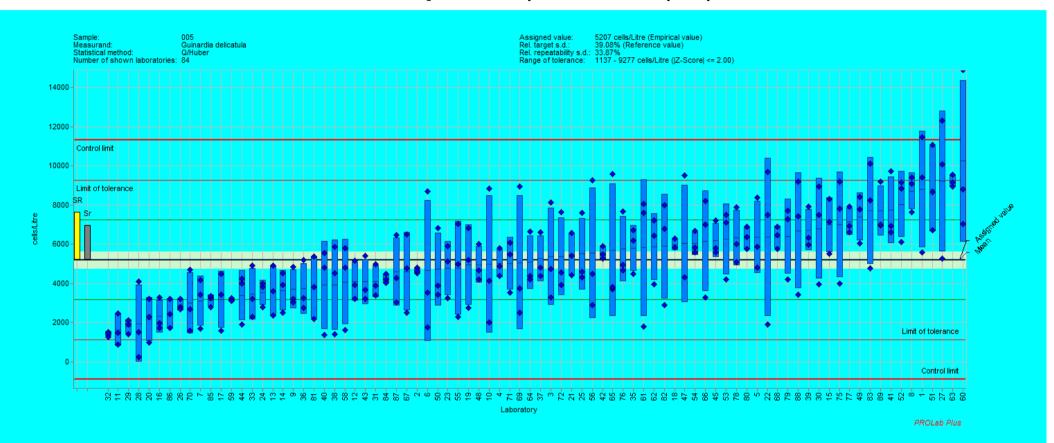
	Coscinodiscus	Z	Scrippsiella	Z	Pseudo-nitzschia	Z	Lingulodinium	Z	Prorocentrum	Z	Dytilum	Z	Guinardia	Z
	granii	score	trochoidea	score	australis	score	polyedrum	score	micans	score	brightwelli	score	delicatula	score
analyst code	cells/Litre		cells/Litre		cells/Litre		cells/Litre		cells/Litre		cells/Litre		cells/Litre	
1	2017	1.51	20517	0.31	3433	0.8	8333	1.52	17017	1.46	2667	0.23	8817	1.77
2	1667	0.12	23053	0.66	2893	0.34	7175	0.62	14885	0.73	2813	0.36	4653	-0.27
3	1333	-1.2	19187	0.12	1400	-0.95	7013	0.5	14147	0.48	2573	0.14	5373	0.08
4	1773	0.54	8240	-1.39	2067	-0.37	2987	-2.64	8760	-1.35	2493	0.07	5027	-0.09
5	1760	0.49	19747	0.2	2467	-0.03	7067	0.54	11733	-0.34	4040	1.47	6360	0.57
6	3502	7.4	10544	-1.08	4679	1.88	2932	-2.68	8191	-1.55	1752	-0.6	4661	-0.27
7	1493	-0.57	12933	-0.74	1867	-0.54	5493	-0.69	7640	-1.73	2493	0.07	3093	-1.04
8	1627	-0.04	20603	0.32	3293	0.68	10500	3.21	20253	2.56	3040	0.57	8707	1.72
9	1717	0.32	13233	-0.7	2683	0.16	5100	-0.99	12300	-0.15	3817	1.27	3700	-0.74
10	1773	0.54	26893	1.19	2560	0.05	7853	1.15	13080	0.12	2213	-0.18	4987	-0.11
11	1427	-0.83	8053	-1.42	1400	-0.95	1680	-3.66	11067	-0.57	2227	-0.17	1613	-1.77
12	1347	-1.15	17800	-0.07	1707	-0.68	5027	-1.05	9653	-1.05	1293	-1.01	4093	-0.55
13	1760	0.49	20680	0.33	2613	0.1	5253	-0.87	13147	0.14	. 1427	-0.89	3627	-0.78
14	1787	0.59	22848	0.63	2413	-0.07	6307	-0.05	13917	0.4	3053	0.58	3653	-0.76
15	1544	-0.37	16439	-0.26	3336	0.72	6770	0.31	15014	0.77	2873	0.42	6988	0.88
16	1493	-0.57	10000	-1.15	827	-1.44	5587	-0.61	9813	-0.99	613	-1.63	2320	-1.42
17	1680	0.17	32107	1.92	1027	-1.27	7413	0.81	15040	0.78	507	-1.73	3173	-1
18	1870	0.92	20813	0.35	3739	1.07	7595	0.95	16276	1.2	2884	0.43	5986	0.38
19	1560	-0.3	13573	-0.65	2947	0.39	6320	-0.04	8787	-1.34	. 3720	1.18	4933	-0.13
20	2133	1.97	39133	2.89	2733	0.2	9067	2.1	17433	1.6	833	-1.43	2167	-1.49
21	1536	-0.4	21131	0.39	3029	0.46	7595	0.95	15740	1.02	2783	0.33	5464	0.13
22	2233	2.37	25667	1.02	3467	0.83	7967	1.24	15367	0.89	1500	-0.83	6367	0.57
23	1600	-0.15	17227	-0.15	2720	0.19	5973	-0.31	13787	0.36	1307	-1	4760	-0.22
24	1567	-0.28	12500	-0.8	2333	-0.14	5700	-0.53	12567	-0.06	2833	0.38	3533	-0.82
25	1560	-0.3	16987	-0.18	1820	-0.59	< 0		9140	-1.22	2407	-0.01	5507	0.15
26	1373	-1.05	16613	-0.23	1293	-1.04	3240	-2.44	7160	-1.9	1173	-1.12	2893	-1.14
27	1640	0.01	22440	0.58	3533	0.89	7947	1.22	17640	1.67	2827	0.37	9227	1.98
28	1333	-1.2	16850	-0.2	1467	-0.89	6100	-0.21	11000	-0.59	650	-1.6	1950	-1.6
29	1200	-1.73	10167	-1.13	1567	-0.8	4367	-1.56	11800	-0.32	1367	-0.95	1800	-1.67
30	1372	-1.05	10718	-1.05	2359	-0.12	6807	0.34	12552	-0.06	2756	0.31	6808	0.79

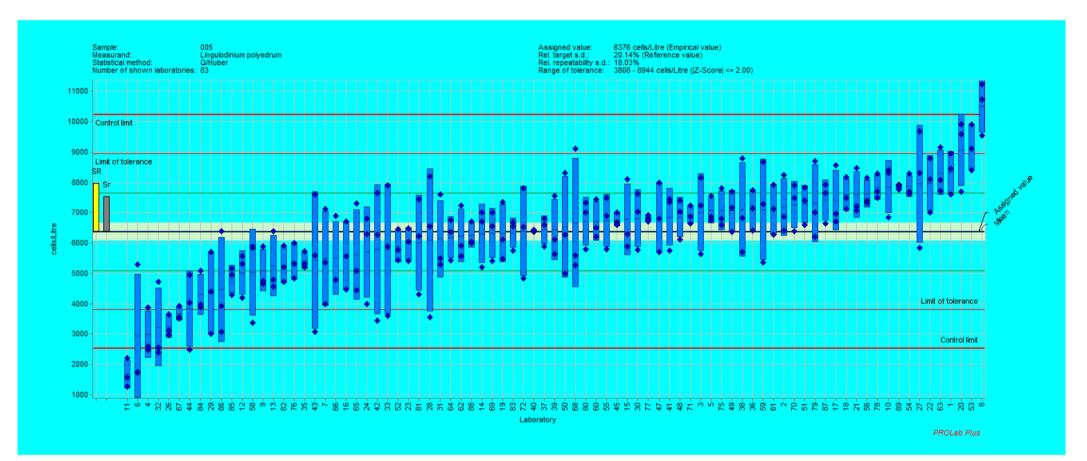
ANNEX XI: Summary of laboratory means

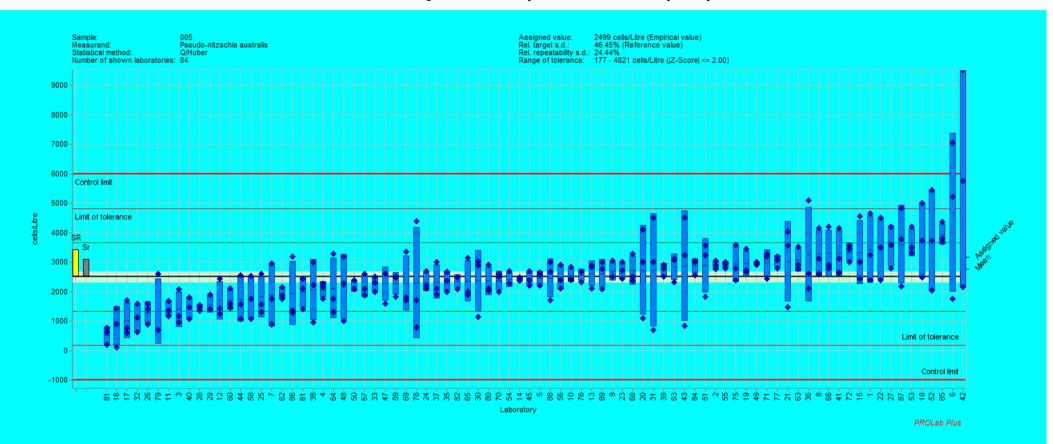
	Coscinodiscus	Z	Scrippsiella	Z	Pseudo-nitzschia	Z	Lingulodinium	Z	Prorocentrum	Z	Dytilum	Z	Guinardia	Z	
	granii	score	trochoidea	score	australis	score	polyedrum score		micans score		brightwelli	score	delicatula score		
analyst code	cells/Litre		cells/Litre		cells/Litre		cells/Litre		cells/Litre		cells/Litre		cells/Litre		
3:	1 1700	0.25	26067	1.08	2733	0.2	6133	-0.19	11833	-0.31	2367	-0.04	4100	-0.54	
33	2 1440	-0.78	7227	-1.54	1120	-1.19	3227	-2.45	5253	-2.55	533	-1.7	1413	-1.86	
33	3 1467	-0.67	32933	2.03	2267	-0.2	5800	-0.45	13000	0.09	933	-1.34	3467	-0.86	
3!	5 1807	0.67	22693	0.61	2347	-0.13	5413	-0.75	13433	0.24	2247	-0.15	5793	0.29	
30	5 1781	0.57	17928	-0.05	3269	0.66	7103	8 0.57	11636	-0.37	2300	-0.1	. 3736	-0.72	
3	7 1433	-0.81	31733	1.86	2333	-0.14	6433	8 0.04	13200	0.16	1900	-0.47	5267	0.03	
38	8 1667	0.12	26479	1.14	2058	-0.38	7102	0.57	12928	0.06	2174	-0.22	3928	-0.63	
39	9 1547	-0.36	19280	0.14	2747	0.21	6440	0.05	13907	0.4	2560	0.13	6733		
40	1587	-0.2	14653	-0.51	1453	-0.9	6400	0.02	13333	0.2	1667	-0.68	3907	-0.64	
4:	1 1560	-0.3	18200	-0.01	3307	0.7	6853	3 0.37	15920	1.08	4573	1.95	7747		
42	2 2053	1.65	11427		5813	2.85	5787	-0.46	15053	0.79	3720	1.18	5560		
43	3 1347	-1.15	23680	0.75	2867	0.32	5427	-0.74	11800	-0.32	3093	0.61	. 4093	-0.55	
44	4 1427	-0.83	18560	0.04	1733	-0.66	3827	-1.99	9733	-1.02	2200	-0.19	3387	-0.89	
4!	5 1633	-0.01	34600	2.26	2433	-0.06	6767	0.3	13333	0.2	1833	-0.53	6200	0.49	
4	7 1800	0.65	24133	0.81	2267	-0.2	6833	0.36	15533	0.95	1700	-0.65	6033	0.41	
48	8 1733	0.38	16093	-0.31	2160	-0.29	6853	3 0.37	14200	0.5	3253	0.76	4960	-0.12	
49	9 1672	0.14	18539	0.03	2961	0.4	7073	0.54	15310	0.87	3097	0.62	7406		
50	1480	-0.62	17027	-0.18	2187	-0.27	6533	8 0.12	12427	-0.11	2627	0.19	4720		
5:	1 1707	0.28	9093	-1.28	2880	0.33	7280	0.7	11200	-0.52	3720	1.18	8827	1.78	
52		-0.09	7867	-1.45	3740	1.07	5893	-0.38	16047	1.13	3307	0.81	. 8047		
53	3 1400	-0.94	27500	1.28	3667	1.01		3 2.15			2233	-0.16	6267	0.52	
54	4 1694	0.23	11063		2412			1.16	6802	-2.02	3080	0.6			
5!	5 1317	-1.27	14583	-0.51	2917	0.36	6733	0.28	13417	0.23	3300	0.8	4783	-0.21	
50	5 1720	0.33	17320	-0.14	2480	-0.02	7627	0.97	11867	-0.3	1800	-0.56	5547	0.17	
58	8 1231	-1.61	5320	-1.8	1795	-0.61	5039	-1.04	11474	-0.43	4039	1.47	4077	-0.56	
59	1507	-0.52	29147	1.51	2280	-0.19	7107	0.57	13747	0.34	. 733	-1.52	3173	-1	
60	0 1717	0.32	17883	-0.06	1717	-0.67	6717	0.27	10317	-0.82	2300	-0.1	. 10250	2.48	
6	1 1947	1.23	18173	-0.02	1987	-0.44	7107	0.57	12013	-0.25	2720	0.28	5827	0.3	
62	2 1520	-0.46	18587	0.04	1933	-0.49	6240	-0.11	11680	-0.36	3493	0.98	5867	0.32	

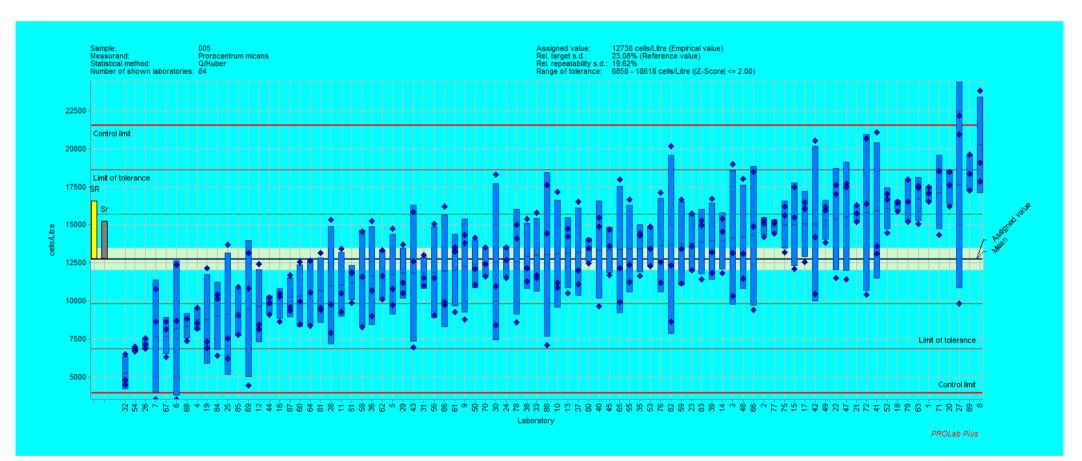

ANNEX XI

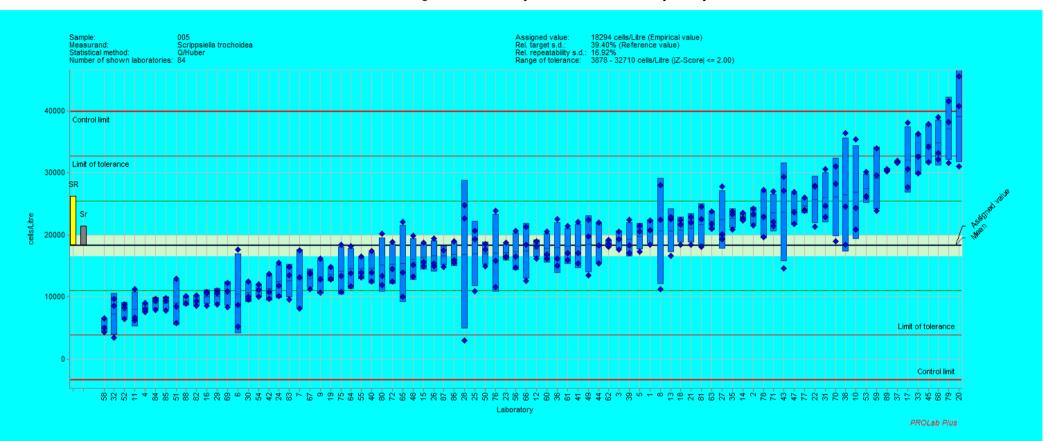

	Coscinodiscus	Z	Scrippsiella	Z	Pseudo-nitzschia	Z	Lingulodinium	Z	Prorocentrum	Z	Dytilum	Z	Guinardia	Z	
	granii	score	trochoidea	score	australis	istralis score poly		n score micans		nicans score		score	delicatula score		
analyst code	cells/Litre		cells/Litre		cells/Litre	itre ce			cells/Litre		cells/Litre		cells/Litre		
63	1720	0.33	22200	0.54	3067	0.49	8320	1.51	16680	1.34	3640	1.11	9227	1.98	
64	1760	0.49	14573	-0.52	2120	-0.33	6187	-0.15	10520	-0.75	2133	-0.25	5080	-0.06	
65	1783	0.58	15367	-0.41	2350	-0.13	5617	-0.59	13350	0.21	2217	-0.18	5700	0.24	
66	66 1800 0.65 17433 -0.12 3300 0				0.69	5500	-0.68	14267	0.52	3800	1.25	6167	0.47		
67	1227	-1.63	13000	-0.73	2187	-0.27	3667	-2.11	7693	-1.72	2400	-0.01	4600	-0.3	
68	1187	-1.79	34796	2.29	2720	0.19	6667	0.23	8327	-1.5	2733	0.29	6373	0.57	
69	2100	1.84	10517	-1.08	2283	-0.19	6317	-0.05	9467	-1.11	2900	0.44	5067	-0.07	
70	1567	-0.28	26100	1.08	2367	-0.11	7267	0.69	12500	-0.08	1733	-0.62	3000	-1.08	
71	1760	0.49	23523	0.73	2973	0.41	6920	0.42	17127	1.49	1613	-0.72	5027	-0.09	
72	1533	-0.41	15281	-0.42	3333	0.72	6387	0.01	15809	1.04	3307	0.81	5373	0.08	
75	2600	3.82	14200	-0.57	2933	0.37	7067	0.54	15000	0.77	2067	-0.31	7000	0.88	
76	1387	-0.99	17093	-0.17	2560	0.05	5387	-0.77	13627	0.3	1773	-0.58	5773	0.28	
77	1640	0.01	24667	0.88	3027	0.45	6813	0.34	14907	0.74	2453	0.04	7147	0.95	
78	1533	-0.41	23233	0.69	2300	-0.17	7833	1.14	12567	-0.06	3900	1.34	6333	0.55	
79	1967	1.31	37133	2.61	1333	-1	7300	0.72	16567	1.3	1167	-1.13	6400	0.59	
80	1800	0.65	15187	-0.43	2360	-0.12	6707	0.26	13320	0.2	3027	0.55	6333	0.55	
81	1667	0.12	21693	0.47	533	-1.69	6000	-0.29	10693	-0.7	733	-1.52	3787	-0.7	
82		0.49	9400	-1.23	2347	-0.13	5280	-0.85	13707	0.33	2427	0.01	5893	0.34	
83	1547	-0.36	12653	-0.78	2840	0.29	6333	-0.03	13880	0.39	3733	1.19	7707	1.23	
84	1760	0.49	8987	-1.29	2867	0.32	4307	-1.61	8973	-1.28	2560	0.13	4240	-0.48	
85	1640	0.01	8987	-1.29	3947	1.25	4800	-1.23	9240	-1.19	2747	0.3	3133	-1.02	
86	1907	1.07	16827	-0.2	1947	-0.48	4467	-1.49	11947	-0.27	1053	-1.23	2453	-1.35	
87	1744	0.42	16680	-0.22	3602	0.95	7410	0.81	10205	-0.86	3872	1.32	4590	-0.3	
88	1373	-1.05	9360	-1.24	2467	-0.03	6253	-0.1	13040	0.1	2307	-0.1	6693	0.73	
89	1813	0.7	30480	1.69	2613	0.1	7853	1.15	18400	1.93	3533	1.01	. 7720	1.23	

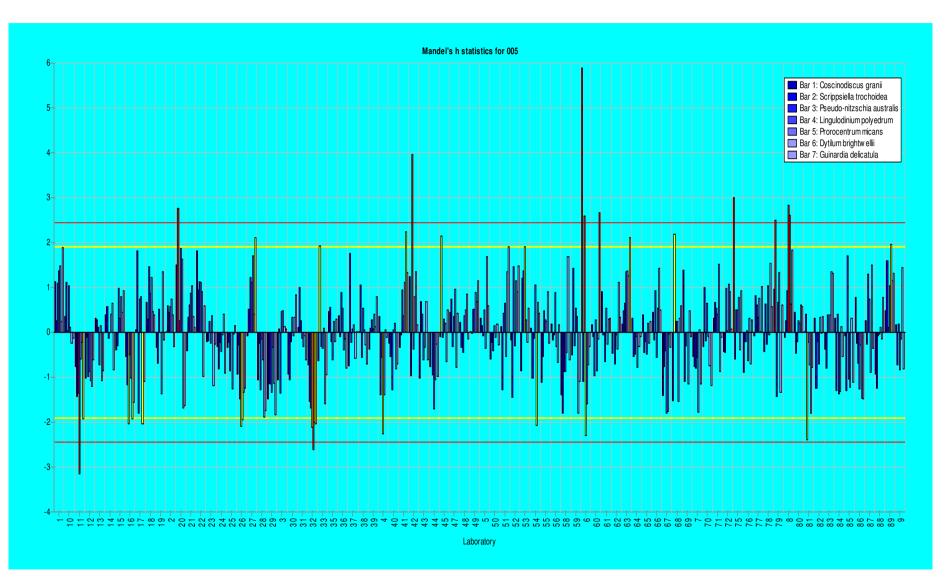

ANNEX XI

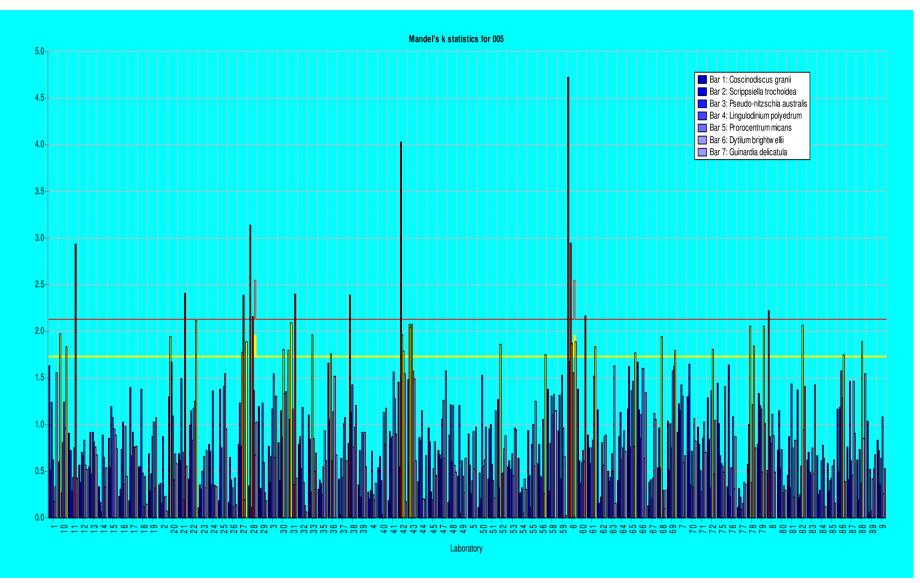

A	NN	JEX	XI

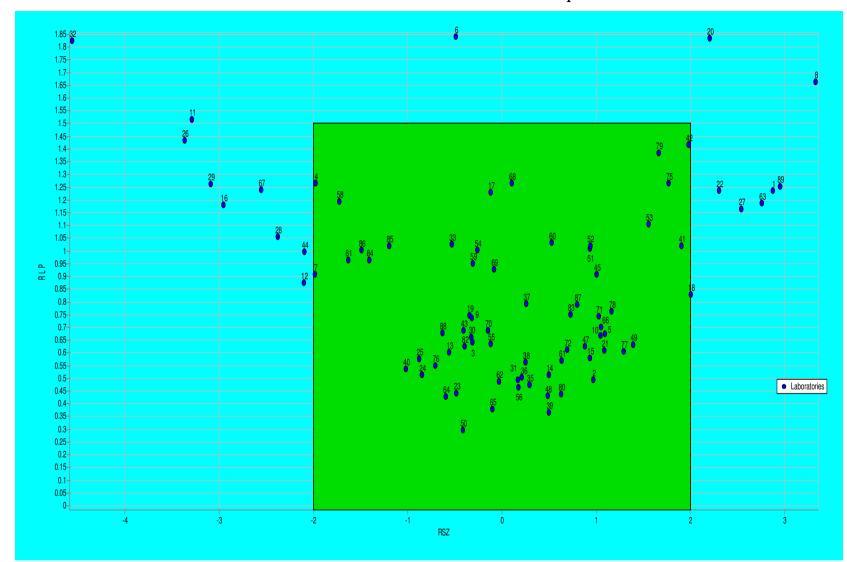

	0	Scrippsiella Z ore trochoidea score	Pseudo-nitzschia Z australis score	Lingulodinium Z polyedrum score	Prorocentrum Z micans score	Dytilum Z brightwelli score	Guinardia Z delicatula score
	cells/Litre	cells/Litre	cells/Litre	cells/Litre	cells/Litre	cells/Litre	cells/Litre
Statistical method	Q/Huber	Q/Huber	Q/Huber	Q/Huber	Q/Huber	Q/Huber	Q/Huber
Assessment	Z <=2.00	Z <=2.00	Z <=2.00	Z <=2.00	Z <=2.00	Z <=2.00	Z <=2.00
No. of laboratories that							
submitted results	84	84	84	84	84	84	84
No. of participants (according							
to design)	84	84	84	84	84	84	84
No. of laboratories with							
quantitative values	84	84	84	83	84	84	84
Arithmetical mean	1644	18538	2491	6277	12729	2433	5196
Median	1625	17609	2500	6550	12580	2600	4800
Assigned value	1637	18294	2499	6376	12738	2414	5207
Mean	1637	18294	2499	6376	12738	2414	5207
Reference value	1640	18102	2494	6440	12770	2473	5173
Target s.d.	252	7208	1161	1284	2940	1105	2035
Reproducibility s.d.	353	7901	933	1599	3819	1205	2443
Repeatability s.d.	316	3096	611	1149	2499	746	1764
Rel. target s.d.	15.40 %	39.40 %	46.45 %	20.14 %	23.08 %	45.78 %	39.08 %
Rel. reproducibility s.d.	21.57 %	43.19 %	37.31 %	25.08 %	29.98 %	49.91 %	46.91 %
Rel. repeatability s.d.	19.30 %	16.92 %	24.44 %	18.03 %	19.62 %	30.91 %	33.87 %
Reference s.d. Limit of reproducibility, R (2.80	252	7208	1161	1284	2940	1105	2035
X sR)	989	22124	2611	4478	10693	3373	6839
Limit of repeatability, r (2.80 X							
sr)	885	8668	1710	3218	6998	2089	4939
Rel. limit of reproducibility	60.40 %	120.94 %	104.48 %	70.24 %	83.95 %	139.74 %	131.35 %
Rel. limit of repeatability	54.04 %	47.38%	68.42 %	50.47 %	54.93 %	86.55 %	94.84 %
HORRAT	23.45	86.29	75.39	37.63	47.87	73.91	70.84
Absolute classical Horwitz s.d.	11	84	15	34	61	15	29
Relative classical Horwitz s.d.	0.66 %	0.46 %	0.62 %	0.54 %	0.48 %	0.62 %	0.55 %
Lower limit of tolerance	1133	3878	177	3808	6858	204	1137
Upper limit of tolerance	2141	32710	4821	8944	18618	4624	9277
Standard error	26	817	86	142	352	113	215
Lower confidence limit	1584	16660	2327	6091	12034	2187	4776
Upper confidence limit	1689	19927	2671	6660	13442	2641	5638
Type F outliers	0	0	0	0	0	0	0
No. of laboratories	84	84	84	83	84	84	84
Number of laboratories with							
replicates outside of tolerance							
limits	31	11	7	21	17	15	15
Number of laboratories with							
mean outside of tolerance							
limits	3	5	1	9	3	0	1
No. of measurement values							
and states	84	84	84	84	84	84	84
No. of measurement values	252	252	252	249	252	250	252
No. of measurement values							
without outliers	252	252	252	249	252	250	252



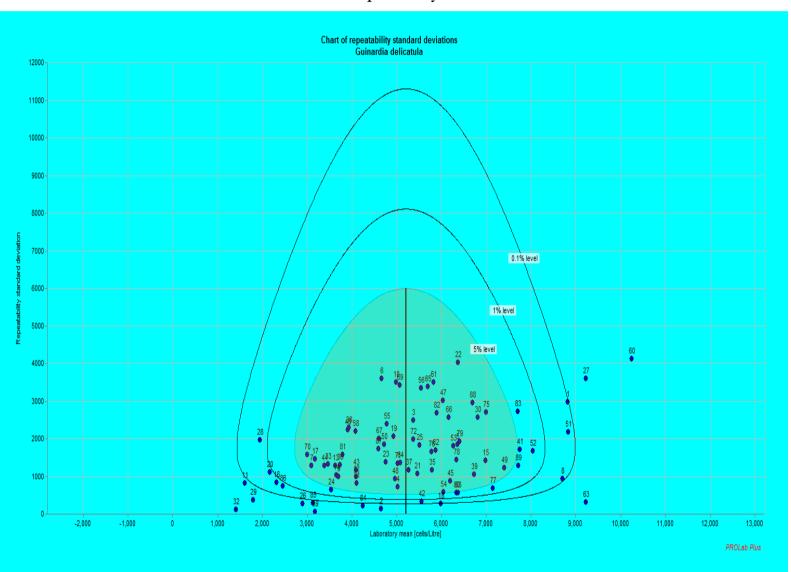


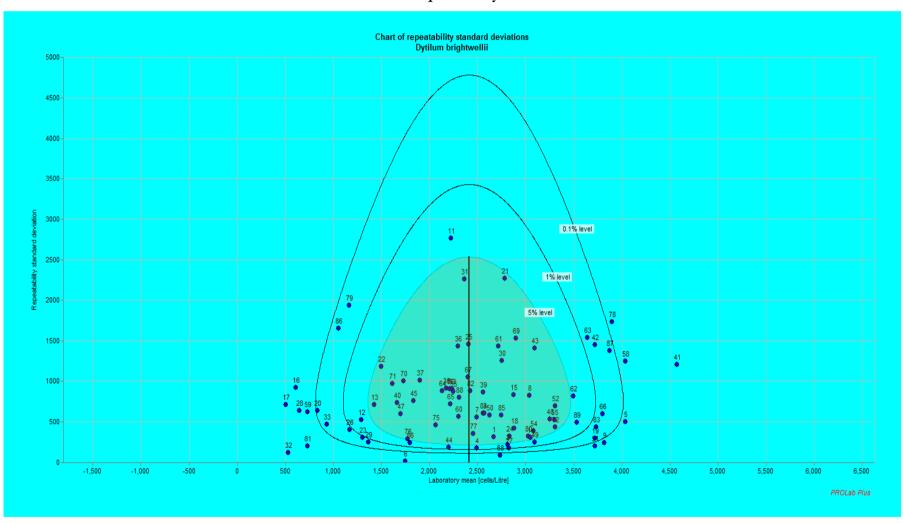


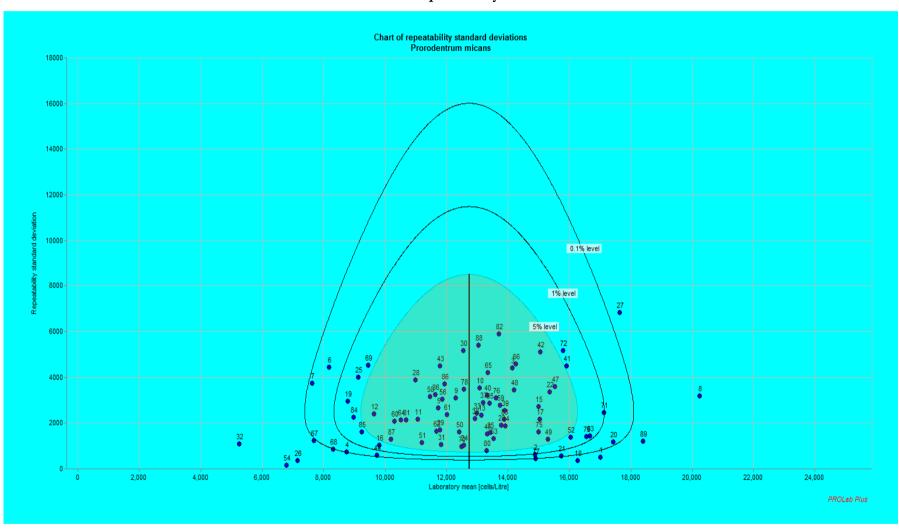


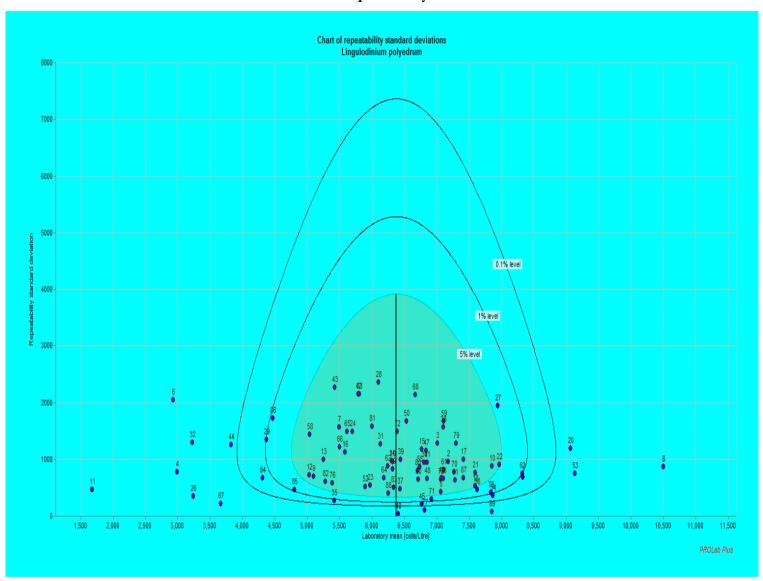


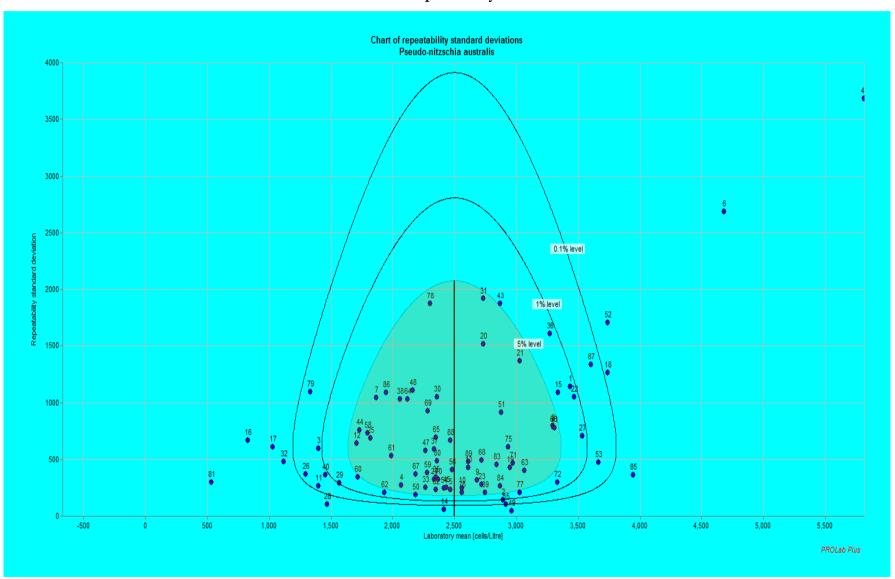
ANNEX XIII: Mandel's h and k statistics

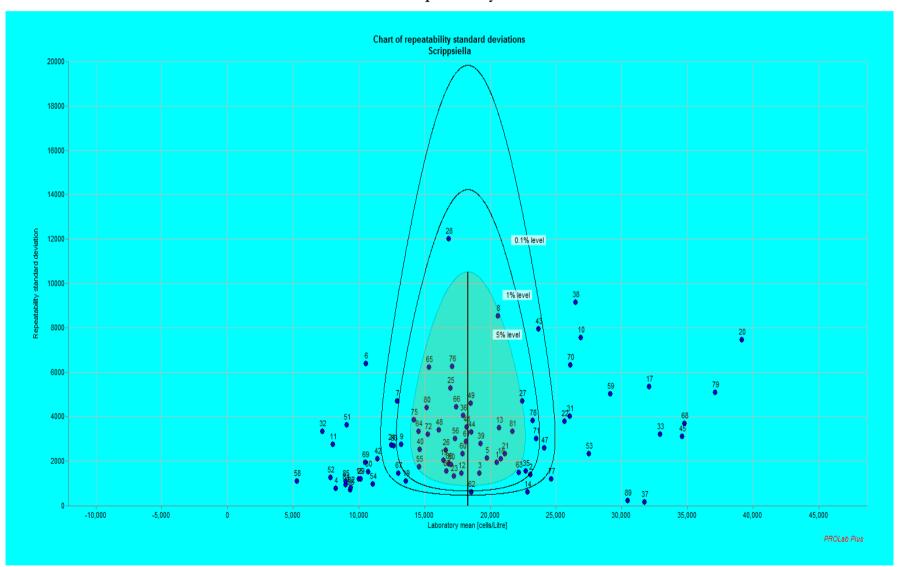


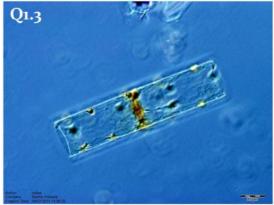

ANNEX XIII Mandel's h and k statistics

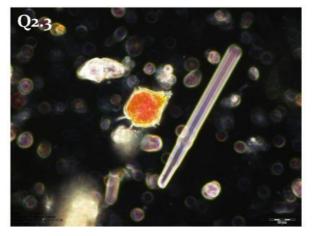


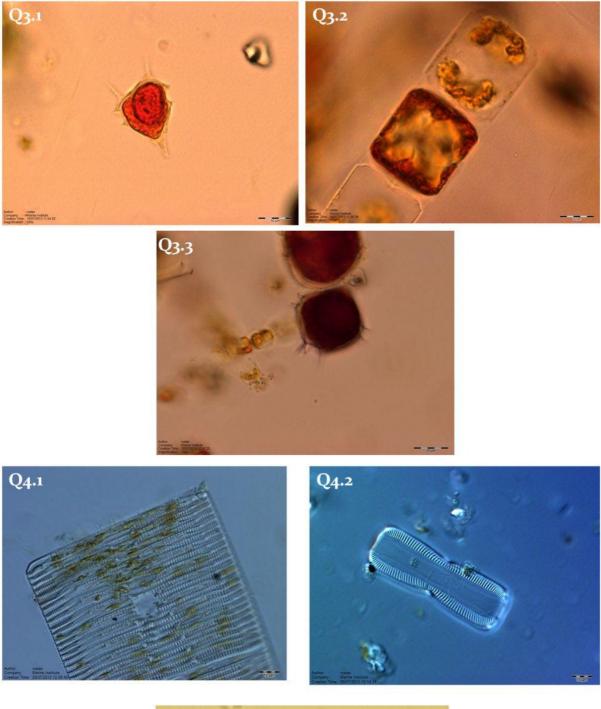

ANNEX XIV: RLP and RSZ for all measurands Bequalm 2015

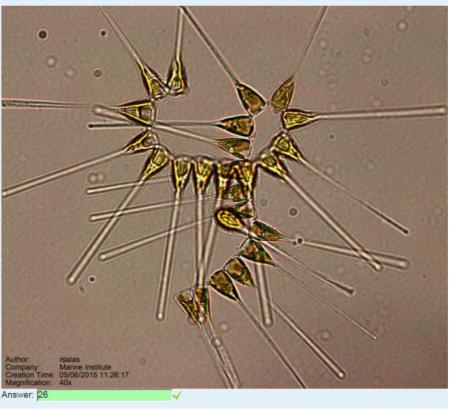

ANNEX XV: Chart of repeatability standard deviations




ANNEX XV: Chart of repeatability standard deviations

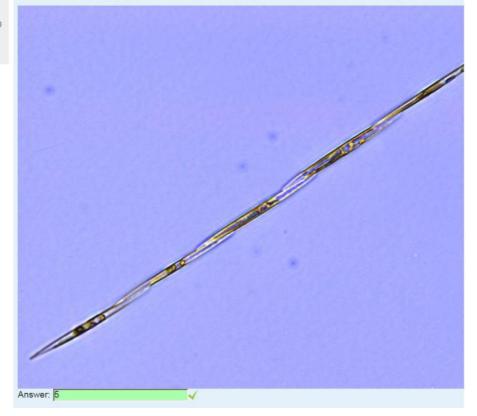


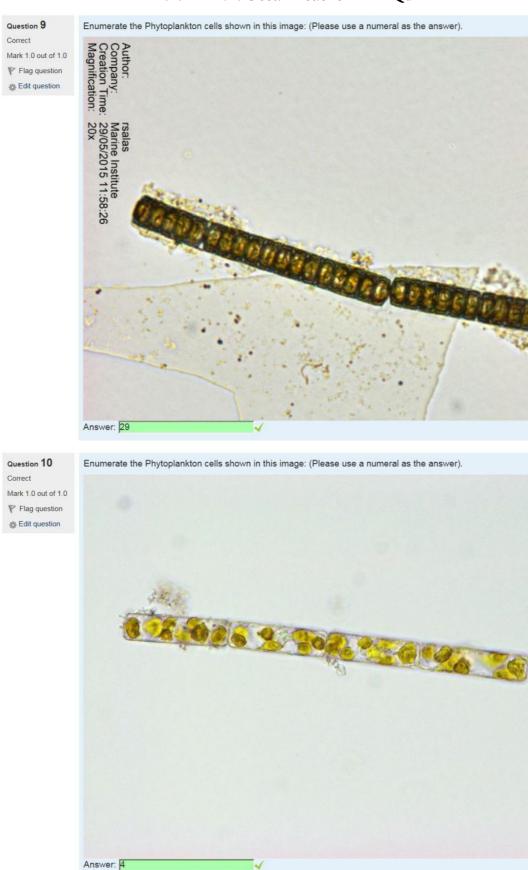




Question 6 Correct Mark 1.0 out of 1.0

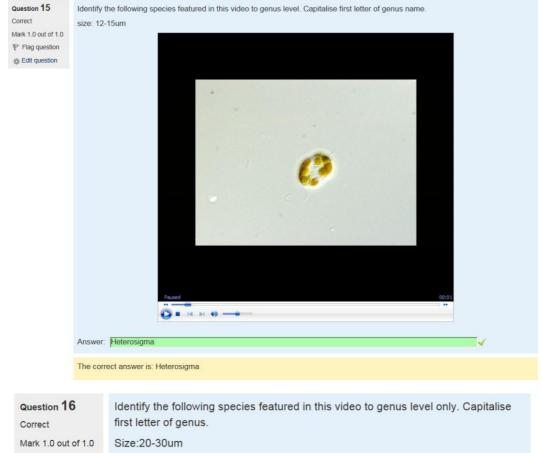
Flag question
Edit question


Enumerate the phytoplankton cells in the following images: (Please use a numeral as the answer)



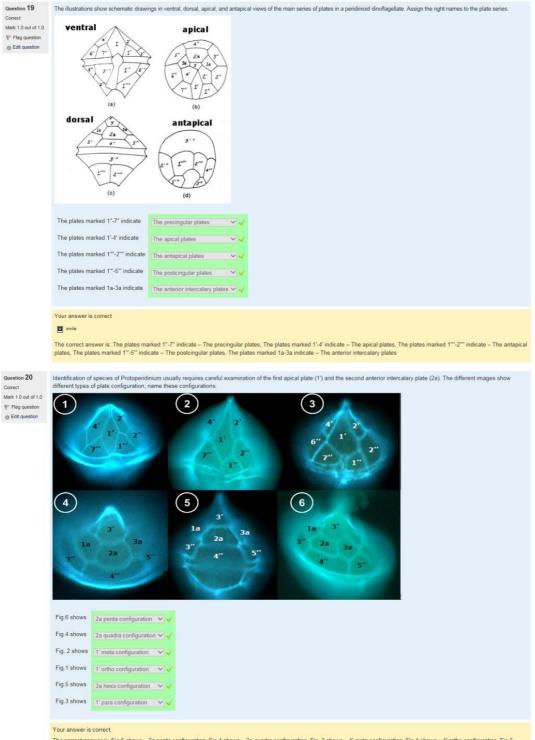



Question 8 Correct Mark 1.0 out of 1.0 V Flag question

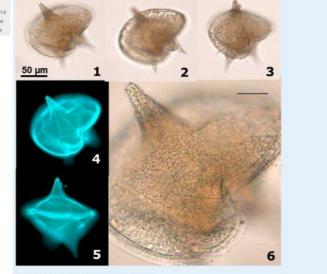

Enumerate the following phytoplankton cells in the image: (Please use a numeral as the answer).

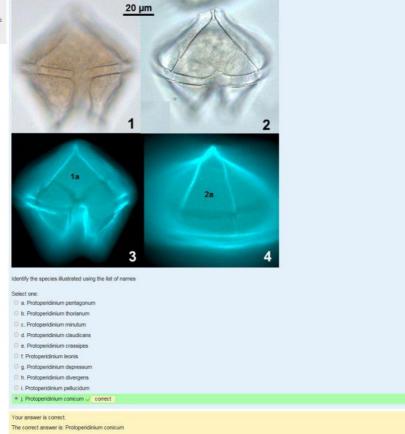


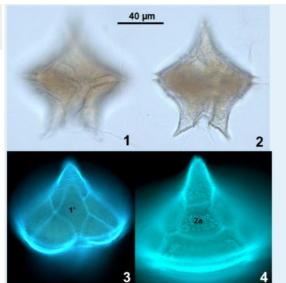




Flag question
 Edit question

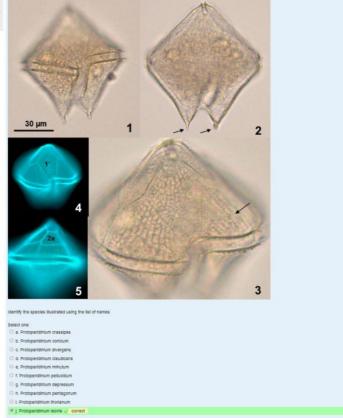



The correct answer is: Fig.6 shows – 2a penta configuration, Fig.4 shows – 2a quadra configuration, Fig.2 shows – 1' meta configuration, Fig.1 shows – 1' ortho configuration, Fig.5 shows – 2a hexa configuration, Fig.3 shows – 1' para configuration



Identify the species illustrated using the list of names	
Select one:	
a. Protoperidinium minutum	
O b. Protoperidinium thorianum	
O c. Protoperidinium divergens	
0 d. Protoperidinium leonis	
e. Protoperidinium crassipes	
* f. Protoperidinium depressum 🧹 correct	
O g. Protoperidinium pentagonum	
C h. Protoperidinium pellucidum	
0 i. Protoperidinium claudicans	
0 j. Protoperidinium conicum	
Your answer is correct.	
The correct answer is: Protoperidinium depressum	

Question 23 Correct Mark 1.0 out of 1.0 V Flag question Edit question



Identify the species illustrated using the list of names

- d. Protoperidinium conicum
 e. Protoperidinium pellucidum
- O f. Protoperidinium minutum
- g. Protoperidinium depressum
 h. Protoperidinium thorianum
- O I. Protoperidinium crassipes
- O j. Protoperidinium pentagonum

Your answer is correct. The correct answer is: Protoperidinium dive

Guection 24 Correct Mark 1.0 out of 1.0 V Fing question () Edit question

Your answer is correct. The correct answer is: Protoperidinium leonis

Question 25 Correct Mark 15 Out of 1.0 ♥ Filing question @ Edit question	20 µm J 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 <
	The correct answer is: Protoperidinium minutum
Question 26 Correct Mark 1.0 out of 1.0 V Filag question © Edit question	<image/>
	0 j. Protoperidinium leonis
	Your answer is correct. The correct answer is: Protoperidinium pentagonum

Question 27 Correct Mark 1.0 out of 1.0 P Flag question Edit question

С 1 20 µm с 2	13
Identify the species illustrated using the list of names	
Select one	
8. Protoperidinium depressum	
0 b. Protoperidinium crassipes	
c. Protoperidinium thorianum correct	
O d. Protoperidinium minutum	
O e. Protoperidinium leonis	
0 f. Protoperidinium claudicans	
0 g. Protoperidinium pellucidum	
0 h. Protoperidinium divergens	
O i. Protoperidinium conicum	
O j. Protoperidinium pentagonum	
Your answer is correct.	
The correct answer is: Protoperidinium thorianum	

Analyst																								Final
code	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12	Q13	Q14	Q15	Q16	Q17	Q18	Q19	Q20	Q21	Q22	Q23	Q24	Q25	Q26	Q27	Grade
64	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
41	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
89	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
80	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
61	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
5	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
85	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
65	100	100	100	100	100	100	100	100	100	100	100	100		100		100	100	100	100	100	100	100	100	100
88	100	100	100	100	100	100	100	100	100	100	100	100		100		100	100	100	100	100	100	100	100	100
1	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
10	100	100	100	100	100	100	100	100	100	100	100	100	100			100	100	100	100	100	100	100	100	100
50	100	100	100	100	100	100	100	100	100	100	100	100	100	100		100	100	100	100	100	100	100	100	100
76	100	100	100	100	100	100	100	100	100	100	100	100	100	100		100	100	100	100	100	100		100	100
2	100	100	100	100	100	100	100	100	100	100	100	100	100	100		100	100	100	100	100	100	100	100	100
84	100	100	100	100	100	100	100	100	100	100	100	100		100		100	100	100	100	100	100	100	100	100
6	100	100	100	100	100	100	100	100	100	100	100	100				100	100	100	100	100	100	100		100
14	100	100	100	100	100	100	100	100	100	100	100	100	100			100	100	100	100	100	100	100	100	100
38	100	100	100	100	100	100	100	100	100	100	100	100		100		100	100	100	100	100	100	100	100	100
72	100	100	100	100	100	100	100	100	100	100	100	100	100	100		100	100	100	100	100	100	100	100	100
49	100	100	100	100	100	100	100	100	100	100	100	100	100			100	100	100	100	100	100	100	100	100
54	100	100	100	100	100	100	100	100	100	100	100	100				100	100	100	100	100	100		100	100
21	100	100	100	100	100	100	100	100	100	100	100	100	100	100		100	100	100	100	100	100	100	100	100
18	100	100	100	100	100	100	100	100	100	100	100	100				100	100	100	100	100	100	100		100 100
31	100	100 100	100	100	100	100	100	100	100	100	100	100	100	100		100 83.7	100	100	100	100	100	100	100	
73	100 100	100	100 100			83.7 100	100 100	99.3 98.6																
28	100	100	100	100	100	100	100	100	100	100	100	100		67.4 100		67.4	100	100	100	100	100	100	100	98.6 98.6
15 86	100	100	100	100	100	100	100	100	100	100	100		51.2	100		100	100	100	100	100	100	100		98.8
	100	100	100	100	100	100	100	100	100	100	100		51.2	100		100	100	100	100	100	100	100		97.8
30 36	100	100	100	100	100	100	100	100	100	100	100	100		100		100	100	100	100	100	100	100	100	97.8
36	100	100	100	100	100	100	100	100	100	100	100	100	51.2	100	100	100	100	100	100	100	100	100	100	97.8

ANNEX XVII: HABs Oceanteacher quiz results

Analyst																								Final
code	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12	Q13	Q14	Q15	Q16	Q17	Q18	Q19	Q20	Q21	Q22	Q23	Q24	Q25	Q26	Q27	Grade
55	100	100	100	100	100	100	100	100	100	100	100	100	51.2	100	100	100	100	100	100	100	100	100	100	97.8
42	100	100	100	100	100	100	100	100	100	100	100	0	100	100	100	100	100	100	100	100	100	100	100	95.7
23	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	0	100	100	100	100	95.7
77	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	0	100	100	100	100	100	95.7
53	100	100	100	100	100	100	100	100	100	100	100	0	100	100	100	100	100	100	100	100	100	100	100	95.7
75	100	100	100	100	100	100	100	100	100	100	100	0	100	100	100	100	100	100	100	100	100	100	100	95.7
37	100	100	100	100	100	100	100	100	100	100	100	0	100	100	100	100	100	100	100	100	100	100	100	95.7
13	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	0	100	100	100	100	100	95.7
45	100	100	100	100	100	100	100	100	100	100	100	0	100	100	100	100	100	100	100	100	100	100	100	95.7
22	100	100	100	100	100	100	100	100	100	100	100	0	100			100	100	100	100	100	100	100		95.7
43	100	100	100	100	100	100	100	100	100	100	0	100	100		100	100	100	100	100	100	100	100	100	95.7
70	100	100	100	100	100	100	100	100	100	100	100	0	100	100	100	100	100	100	100	100	100	100	100	95.7
47	100	100	100	100	100	100	100	100	100	100	100	0	100		100	100	100	100	100	100	100	100	100	95.7
58	100	100	100	100	100	100	100	100	100	100	100	100	100		100	100	100	100	0	100	100	100	100	95.7
87	100	100	100	100	100	100	100	100	100	100	100	100	100		100	100	100	100	0	100	100	100	100	95.7
79	100	100	100	100	100	100	100	100	100	100	100	0	100		100	100	100	100	100	100	100	100	100	95.7
48	100	100	100	100	100	100	100	100	100	100	100	100	100	-	100	100	100	100	0	100	100	100	100	94.2
44	100	100	100	100	100	100	100	100	100 100	100	100	100		67.4	100	100	100	100 100	0	100	100	100	100	94.2
32	100 100	100	0 100	100 100	100	100 51.2		100 100	51.2 100	100 100	100	100 100	100 100	100 100	100 100	100 100	93.5 93.5							
35	100	100	100	100	100	100	100	100	100	100	100		51.2	100 100	100	100	100	100	100	100	100	100	100	93.5
3 29	100	100	100	100	100	100	100	100	100	100	100	-	51.2	100	100	100	100	100	100	100	100	100	100	93.5
29	100	100	100	100	100	100	100	100	100	100	100	100	-	67.4		100	100	100	0	100	100	100		93.3
74	100	100	100	100	100	100	100	100	100	100	100	100	100	-	100		100	0	100	100	100	100	100	92.8
19	100	100	100	100	100	100	100	100	100	0	100	0	100	-	100	100	100	100	100	100	100	100	100	91.3
69	100	100	100	100	100	100	100	100	100	0	100	0	100		100	100	100	100	100	100	100	100	100	91.3
60	100	100	100	100	100	100	100	100	100	100	100	0	100	100	100	100	100	100	0	100	100	100	100	91.3
27	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	0	100	0	100	91.3
51	100	100	100	0	100	100	100	100	100	100	100	100	100		100	100	0	100	100	100	100	100	100	91.3
56	100	100	100	100	100	100	100	100	100	0	100	0	100	100	100	100	100	100	100	100	100	100	100	91.3

ANNEX XVII: HABs Oceanteacher quiz results

Analyst																								Final
code	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12	Q13	Q14	Q15	Q16	Q17	Q18	Q19	Q20	Q21	Q22	Q23	Q24	Q25	Q26	Q27	Grade
62	0	100	100	100	100	100	100	100	100	100	100	0	100	100	100	100	100	100	100	100	100	100	100	91.3
24	100	100	100	100	100	100	100	100	100	100	100	0	100	100	100	100	100	100	100	0	100	100	100	91.3
83	100	100	100	0	100	100	100	100	100	100	100	100	100	67.4	100	100	0	100	100	100	100	100	100	89.9
26	100	100	100	100	100	100	100	100	100	100	0	0	100	100	60.5	100	100	100	100	100	100	100	100	89.6
52	100	100	100	100	100	100	100	100	100	100	0	100	76.7	32.6	100	51.2	100	100	100	100	100	100	100	89.5
40	0	100	100	100	100	100	100	100	100	100	100	0	51.2	100	100	100	100	100	100	100	100	100	100	89.1
78	100	100	100	100	100	100	100	100	100	100	0	0	51.2	100	100	100	100	100	100	100	100	100	100	89.1
33	100	100	100	100	100	100	100	100	100	100	100	0	51.2	100	100	100	100	100	0	100	100	100	100	89.1
8	0	100	100	100	100	100	100	100	0	100	100	100	51.2	67.4	100	100	100	100	100	100	100	100	100	87.7
16	100	100	100	100	100	100	100	0	100	100	100	100	100	100	0	100	100	100	0	100	100	100	100	87
59	100	100	100	100	100	100	100	100	100	0	100	-	76.7	51.2	100	67.4	100	100	100	100	100	100	100	86.6
68	100	100	100	100	100	100	100	100	100	100	0	0	100	100	100	83.7	100	100	100	100	100	0	100	86.2
11	0	100	100	100	100	100	100	100	100	100	100	0	100	100	39.5	100	100	100	0	100	100	100	100	84.3
12	100	100	100	100	100	100	100	100	100	100	0	0	100	100	100	100	100	0	100	0	100	100	100	82.6
39	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	0	0	100	0	100	0	100	82.6
81	100	100	100	100	100	100	100	0	100	0	0	100	25.6	67.4	100	67.4	100	100	100	100	100	100	100	80.8
17	0	100	100	100	100	100	100	100	100	100	100	0	25.6	16.3	100	100	100	100	0	100	100	100	100	80.1
4	100	0	100	100	100	100	100	100	0	100	0	0	51.2	100	100	67.4	100	0	100	100	100	0	0	65.9
66	100	100	100	100	100	100	100	100	100	0	100	0	25.6	32.6	100	67.4	0	0	0	0	100	0	100	62
67	100	100	100	100	100	100	100	100	100	100	0	0	-	-	-	-	-	-	-	-	-	-	-	43.5
Overall	93.8	98.8	100.0	97.5	100.0	100.0	100.0	97.5	97.5	91.3	88.8	63.3	89.2	93.3	97.2	95.9	94.9	91.1	84.8	93.7	100.0	93.7	98.7	93.3

ANNEX XVII: HABs Oceanteacher quiz results