



# BEQUALM Phytoplankton proficiency test in the abundance and composition

of marine microalgae 2013 report.

PHY-ICN-13-MI1 VR 1.0



Rafael Salas<sup>1</sup> & Jacob Larsen<sup>2</sup>

<sup>1</sup>Marine Institute, Rinville, Oranmore, Co.Galway, Ireland

<sup>2</sup> IOC Science and Communication center on harmful algae Department of Biology, University of Copenhagen, Øster Farimagsgade 2D 1353 Copenhagen K. Denmark Table of Contents:

| 1. | Summary of results                                 | Pages 4-5   |
|----|----------------------------------------------------|-------------|
| 2. | Introduction                                       | Pages 5-6   |
| 3. | Materials and Methods                              | Pages 6-10  |
|    | 3.1 Sample preparation, homogenisation and spiking | Page 6-7    |
|    | 3.2 Culture material, treatments and replicates    | Pages 7-8   |
|    | 3.3 Cell concentration                             | Page 8      |
|    | 3.4 Sample randomization                           | Page 8      |
|    | 3.5 Forms and instructions                         | Page 9      |
|    | 3.6 Statistical analysis                           | Page 9      |
|    | 3.7 Bequalm online HAB quiz                        | Page 10     |
| 4. | Results                                            | Pages 11-38 |
|    | 4.1 Homogeneity and stability test                 | Pages 11-14 |
|    | 4.2 Outliers and missing values                    | Pages 14-15 |
|    | 4.3 Analysts' data                                 | Pages 15-23 |
|    | 4.4 Assigned value and its uncertainty             | Page 24     |
|    | 4.5 Comparison of the assigned value               | Pages 24-25 |
|    | 4.6 Calculation of performance statistics          | Pages 25-31 |
|    | 4.6.1 Estimates of laboratory bias                 | Pages 25-26 |
|    | 4.6.2 % ranking                                    | Pages 27-29 |
|    | 4.6.3 Z-scores                                     | Pages 29-31 |
|    | 4.7 Combined performance scores                    | Pages 32-36 |
|    | 4.7.1 Histograms                                   | Pages 32-33 |
|    | 4.7.2 Bar plots of standardized laboratory bias    | Page 34     |
|    | 4.7.3 Plots of repeatability standard deviation    | Pages 34-36 |
|    | 4.8 Qualitative data                               | Page 37     |
|    | 4.9 Ocean Teacher online HABs Quiz                 | Pages 37-38 |
|    |                                                    |             |

5. Discussion

Pages 39-44

6. Recommendations from workshop 2013 Pages 44-45 Annex I : Form 1 : Return slip and checklist Page 46 Annex II: Form 2 : Enumeration and identification results log sheet Page 47 Annex III : Form 3 : Homogeneity test Page 48 **Annex IV: Test Instructions** Pages 49-59 Annex V: Workshop Agenda Page 60 Annex VI: Participating laboratories Page 61 Annex VII: Statement of performance Pages 62-63 Annex VIII: Ocean teacher Hab quiz Pages 64-76 Annex IX: Z-scores table page 77 Annex X: HAB online quiz grades Page 78

## 1. Summary of results

• 49 analysts from 34 laboratories took part in this intercomparison. 47 analysts and 32 laboratories returned results. This year, new laboratories have joined the scheme from France, Iceland, Italy, Singapore, Uruguay, USA and Australia

• Most participating laboratories are based in Europe (29): Ireland (3), Northern Ireland (1), Scotland (2), England (7), France (6), Netherlands (2), Sweden (1), Spain (3), Croatia (1), Iceland (1), Italy (1) and Greece (1). A small number come from different continents: USA (1), Australia (2), Singapore (1) and Uruguay (1).

• There were four species of interest in this intercomparison exercise. These were: *Chaetoceros diadema, Coscinodiscus granii, Gyrodinium instriatum* and *Heterosigma akashiwo*.

• The average and confidence limit for each test item was calculated using the robust algorithm in annex C of ISO13528 which takes into account the heterogeneity of the samples and the between samples standard deviation from the homogeneity test. ISO 13528 is only valid for quantitative data. We have used the consensus values from the participants.

• The homogeneity and stability test show that samples don't meet the assessment criteria set out in the standard. The number of replicates needed for the samples to meet the criteria would be impractical. So, instead the between sample Standard deviation is taken into account for the final confidence limits. Outliers don't affect test result as we are using the robust analysis.

• The assigned values standard uncertainty was found to be negligible for all test items, so there is no bias in the method.

• The laboratory bias plot indicates that results are normally distributed around zero for all test items. The percentage difference plots show that only a few analysts are outside the warning (2SD) and action (3SD) limits. The % rank using probability plots gives an indication of the most extreme values.

• The Z-scores were calculated using the robust mean and standard deviation for each test item. There was one warning signal on the *C.diadema* count, two warning signals on the *H.akashiwo* count and two warning and two action signals in the *G.instriatum* count. A total of seven signals from 184 results. Also, four

analysts failed to identify one of the species in the samples, two analysts failed to identify *C.diadema* and two others *H.akashiwo*.

• The bar plot shows bias across all levels (test items) for three analysts which have tended to underestimate all counts. This could point out to methodology issues. The plots of repeatability standard deviation assume that there is no difference between laboratories means and standard deviations. The plots showed unusual results for two out of the four counts with extreme values found on the *C.diadema* count and on the *H.akashiwo* count. Some counts look implausible.

• Sample composition results show that the easiest items for identification were *C.granii* and *H.akashiwo*, with near perfect scores for all analysts, *G.instriatum* prove the most difficult item for identification, with ten incorrect answers and *C.diadema* proved difficult at species level but all correct to genus.

• The Ocean teacher online HAB quiz results suggests a high rate of proficiency. 45 analysts returned results and 27 analysts achieved 100% scores with another 12 analysts over 90% mark.

• Most questions average above 90%. The worst answered question was Q8 (planozygote) with a 73% on average.

• Problems arose from 'short answer' questions where grammar errors, punctuation or similar answers were given. In this case, where the answer was correct, notwithstanding these grammar issues, it was given as a valid answer and the scores should reflect this change.

• Issues regarding naming authority and use of synonyms in answers as in Preperidinium (Zygabikodinium). These answers were given as correct.

# 2. Introduction

The Phytoplankton Bequalm intercomparison study in 2013 was designed to test the ability of analysts to identify and enumerate correctly marine phytoplankton species in preserved water samples. As in previous years, samples have been designed using laboratory cultures. There were four species of interest in this intercomparison exercise. These were: *Chaetoceros diadema* (Ehrenberg) Gran, *Coscinodiscus granii* Gough, *Gyrodinium instriatum* Freudenthal & J.J.Lee and *Heterosigma akashiwo* (Y.Hada) Y.Hada ex Y.Hada & M.Chihara. Also, we asked participants to return cell counts on three replicate samples as part of a homogeneity test

Collaboration between the Marine Institute in Ireland and the IOC UNESCO Centre for Science and Communication of Harmful algae in Denmark on the Bequalm intercomparison exercise commenced in 2011. This collaboration involves the use of algal cultures from the Scandinavian Culture Collection of Algae and Protozoa in Copenhagen and also includes the elaboration of a marine phytoplankton taxonomy quiz using an online platform called 'Ocean Teacher'. This HAB quiz was designed by Jacob Larsen (IOC) and Rafael Salas (MI).

This year, 49 analysts from 34 laboratories took part in this intercomparison. 47 analysts and 32 laboratories returned results. Laboratories from the USA, Singapore, Uruguay, France, Italy and Iceland took part in this exercise for the first time. Most laboratories are based in Europe (29): Ireland (3), Northern Ireland (1), Scotland (2), England (7), France (6), Netherlands (2), Sweden (1), Spain (3), Croatia (1), Iceland (1), Italy (1) and Greece (1). A small number of laboratories come from USA (1), Australia (2), Singapore (1) and Uruguay (1).

This intercomparison exercise has been coded in accordance with defined protocols in the Marine Institute, for the purposes of quality traceability and auditing. The code assigned to the current study is PHY-ICN-13-MI1. PHY standing for phytoplankton, ICN for intercomparison, 13 refers to the year 2013, MI refers to the Marine Institute and 1 is a sequential number of intercomparisons for the year. So, 1 indicates the first intercomparison for the year 2013.

## 3. Materials and Methods

#### 3.1 Sample preparation, homogenization and spiking

All samples were prepared following the following protocol. The seawater used in this experiment was natural field water collected at Ballyvaughan pier, Galway bay, Ireland, filtered through GF/C Whatmann filters (Whatmann<sup>TM</sup>, Kent, UK), autoclaved (Systec V100, Wettenberg, Germany) and preserved using Lugol's iodine solution (Clin-tech, Dublin, Ireland). The sterilin tubes were made up to the required volume with sterile filtered seawater containing neutral lugol's iodine. This was carried out using a 25ml serological pipettes (Sardstedt, Nümbrech, Germany) and the volume weighted in a calibrated balance (ME414S Sartorius, AG Gottingen, Germany). The density of seawater was considered for this purpose to be 1.025g/ml. The final volume of each sample was 29 ml approximately before spiking the samples.

Two sample sets were prepared, the first one containing the four species and the second one containing one species for counting only to test the homogeneity and stability of the samples preparation. Both sets were prepared using the same technique.

A stock solution for each of the four species was prepared using 50ml screw top bottles (Duran®, Mainz, Germany). Then, a working stock containing the four species to the required cell concentration was prepared using a measured aliquot from each stock solution into a 2l Schott glass bottle. Another stock and working solution was made up for the homogeneity and stability test in the same manner. Then, each working stock was inverted 100 times to homogenate the samples and 1ml aliquots were pipetted out after each 100 times inversion using a calibrated 1ml pipette (Gilson, Middleton, USA) with 1ml pipette tips (Eppendorf, Cambridge, UK). The 1ml aliquots were dispensed into the 30ml plastic sterilin tubes (Sardstedt, Nümbrech, Germany) containing 29ml.

Samples were capped and label, parafilm was used around the neck of the sterilin tube to avoid water loss, placed in envelopes and couriered via TNT couriers for a one day delivery across the world, in order for all the laboratories to have approximately the same arrival time.

3.2 Culture material, treatments and replicates.

The laboratory cultures used in this exercise were sourced from the Scandinavian Culture Collection of Algae and Protozoa (SCCAP) in Denmark. The algae *Chaetoceros diadema, Coscinodiscus granii, Gyrodinium instriatum* and *Heterosigma akashiwo* was used for this study. A fifth culture kept in the Marine Institute of *Scrippsiella sp.* was used for the homogeneity test.

There were two sample sets. The first set (set 1) comprised three samples spiked with one species (*Scrippsiella sp.*). The sterilin tubes were numbered in black pen and analysts were asked to return whole chamber counts. This data was used to test the homogeneity and stability of the samples. No identification of the organism was needed.

The second set (Set 2) consisted of four samples; three samples for analysis and one spare. Samples were numbered in red pen and four species were spiked in this set, which analysts were required to enumerate, identify and report the results in cells per litre.

A total of 200 samples were produced for the homogeneity test and 300 samples for the enumeration and identification study. Of the samples from the homogeneity test 150 were sent to the participants and 15 were sent to a reference laboratory. Of the 300 samples 200 samples were sent to the participants for analysis.

An expert laboratory carried out the homogeneity and stability test. The data generated by this laboratory was used to test the homogeneity and stability of the samples. A minimum of 10 samples (30ml volume) were necessary for the homogeneity test and a minimum of 3 samples for the stability test. These were randomly selected from the batch and sent to the expert laboratory to carry out the counts. Samples had to be divided in two portions of 10ml each.

A time delay between the homogeneity test and the stability test was required. ISO 13528 indicates that this delay should be similar to that experienced by the participants in the test. As analysts have a month to return results from sample receipt, it was decided that this time delayed should be of one month as well.

# 3.3 Cell concentrations

Preliminary cell counts from the stock solutions made to establish the cell concentration of each species was carried out using a glass Sedgewick-Rafter cell counting chamber (Pyser-SGI, Kent, UK) to ascertain an approximation of the cell concentration in the samples.

Generally cell concentrations were low and ranging from approximately 3200 cells/Litre for *C.granii*, 7200 cells/L for *H.akashiwo*, 9200 cells/L for *C.diadema* and 10000 cells/L for *G.instriatum*. The highest concentration (10000) would correspond to a count of 250 cells in a 25ml sedimentation chamber. The cell concentration for the homogeneity test was 8000 cells/L approximately.

## 3.4 Sample randomization

All samples were allocated randomly to the participants using Minitab® Statistical Software Vr16.0 randomization tool.

#### 3.5 Forms and instructions

A set of instructions and forms required to complete the exercise were sent via e-mail to all the analysts including their unique identifiable laboratory and analyst code. Form 1 (Annex I) to confirm the receipt of materials; number and condition of samples and correct sample code. Form 2 (Annex II) and Form 3 (Annex III) in an Excel spreadsheet format to input species composition and calculate abundance for each species. Form 2 was used for the identification and enumeration part of the exercise and form 3 to input the homogeneity test counts. All analysts were asked to read and follow the instructions (Annex IV) before commencing the test.

#### 3.6 Statistical analysis

Statistical analysis was carried out on Minitab® Statistical Software Vr16.0, Microsoft office Excel 2007 and PROlab Plus demo version 2.14, a dedicated software for the statistical analysis of intercalibration and proficiency testing exercises.

We followed the standard ISO normative 13528 which describes the statistical methods to be used in proficiency testing by interlaboratory comparisons. Here, we use this standard to determine and assess the homogeneity and stability of the samples, the number of replicate measurements needed to meet the criteria, how to deal with outliers, how to determine assigned values for the test and calculate their standard uncertainty. How to compare these values with their standard uncertainty, how to calculate the performance statistics for the test, the graphical representation of these statistics and the combination of performance scores with a final discussion over this combination of scores over several rounds.

The statistical analysis of the data and final scores generated from this exercise has been carried out using the consensus values from the participants. The main difference with previous years is that by using ISO13528, the consensus values from the participants must undergo several transformations before they can be used to generate Z-scores.

The main transformation is the use of iteration to arrive at robust averages and standard deviations for each test item. This process allows for outliers and missing values to be dealt with, it also allows for the heterogeneity of the samples to be taken into consideration when calculating these values.

## 3.7 Bequalm online HAB quiz

The online HAB quiz was organized and set up by Jacob Larsen (IOC UNESCO, Centre for Science and Communication on Harmful Algae, Denmark) and Rafael Salas (Marine Institute, Ireland). The exercise was prepared in the web platform 'Ocean teacher'. The Ocean teacher training facility is run by the IODE (International Oceanographic Data and information Exchange) office based in Oostende, Belgium. The IODE and IOC organize some collaborative activities for example: the IOC training courses on toxic algae and the Bequalm online HAB quiz. The online quiz uses the open source software Moodle Vr2.0 (https://moodle.org ).

First time participants had to register in the following web address: <u>http://classroom.oceanteacher.org/</u> before allowed to access the quiz content, while analysts already registered from previous years, could go directly to the login page. Once registered, participants could login into the site and using a password, able to access the quiz. Eight weeks were given to analysts to register, complete and submit the online quiz. The course itself was found under the courses tab in the main menu page. Analysts could link to the Harmful Algal Bloom programme BEQUALM 2013 and quiz content from here.

The test itself consisted of 14 questions (see Annex VIII). There were different question types used in this quiz; matching, multiple choice and short answer questions. Matching questions had dropdown menus with the answers and analysts had to choose the right ones, multiple choice questions have different choices and analysts must tick the right ones and in short answer type questions analysts had to write what they thought was the correct answer.

The online quiz could only be submitted once. After that, no changes could be made. However, analysts could login and out as many times as they wished throughout the period of time allocated and changes to the quiz could be saved and accessed at a later stage, so the quiz didn't have to be completed in one go.

# 4. Results

4.1 Homogeneity and stability study

The procedure for a homogeneity and stability test is recorded in annex b (pg 60) of ISO13528. The assessment criteria for suitability, is also explained in this annex.

| CELLS / L     |            |        |           |             |         |              |         |
|---------------|------------|--------|-----------|-------------|---------|--------------|---------|
|               |            |        |           |             |         | Between test |         |
|               |            | Sample | Test      | Test        | sample  | portion      |         |
|               | Date       | number | portion 1 | portion 2   | average | range        | *2      |
|               | 28/05/2013 | 7      | 6854      | 7606        | 7230    | 752          | 565504  |
|               | 28/05/2013 | 29     | 8357      | 7418        | 7888    | 939          | 881721  |
|               | 30/05/2013 | 77     | 9390      | 10047       | 9719    | 657          | 431649  |
|               | 30/05/2013 | 166    | 6761      | 6479        | 6620    | 282          | 79524   |
|               | 02/06/2013 | 107    | 9390      | 9108        | 9249    | 282          | 79524   |
|               | 02/06/2013 | 100    | 8451      | 8169        | 8310    | 282          | 79524   |
|               | 03/06/2013 | 122    | 7743      | 8971        | 8357    | 1228         | 1507984 |
|               | 03/06/2013 | 194    | 5540      | 7324        | 6432    | 1784         | 3182656 |
|               | 04/06/2013 | 54     | 6949      | 7794        | 7372    | 845          | 714025  |
|               | 04/06/2013 | 121    | 8545      | 7982        | 8264    | 563          | 316969  |
|               |            |        |           | Average:    | 7944    | Sum          | 7839080 |
|               |            |        |           | SD          | 1061    | P=           | 10      |
|               |            |        | SD within | samples:    | 626     |              |         |
|               |            |        | SD betwee | en samples: | 965     |              |         |
| homogeneity c | riteria    |        | 965       | 318         |         |              |         |

Figure 1: Homogeneity test results by expert laboratory

The results of ten samples for the homogeneity test by our expert laboratory are plotted in figure 1. The average was found to be 7944  $\pm$ 1061 cells/L. The Standard deviation (SD) within samples (Sw) was 626 calculated using equation (A) where Wt is the between test portion range and g is the number of samples.

$$s_{\rm W} = \sqrt{\sum w_t^2 / (2g)}$$

A)

and the between samples (Ss) standard deviation was calculated as 965 using equation (B) below where Sx is the standard deviation of sample averages and Sw is the within samples standard deviation.

$$s_{s} = \sqrt{s_{x}^{2} - \left(s_{w}^{2}/2\right)}$$

B)

The samples are considered to be adequately homogeneous if the between samples standard deviation (Ss) is less or equal 0.3 times the standard deviation of the samples. (equation C)

As the SD between samples 965 is larger than 318 (0.3 times the SD) see figure 1, the criteria is not met and we conclude that the samples are not adequately homogeneous. When this is the case, the standard (ISO 13528) allows, for a number of samples to be distributed among the participants. Their results (fig. 2) may increase the within sample standard deviation and this can then be used to calculate the necessary number of replicate measurements for the criteria to be met.

| ANALYST CODE              | Avera | X-X*     | X*i        | it2          | it3          | it4          | it5          |
|---------------------------|-------|----------|------------|--------------|--------------|--------------|--------------|
| 20                        | 468   | 7899     | 6618       | 6641         | 6651         | 6656         | 6658         |
|                           |       |          |            |              |              |              |              |
| 24                        | 5222  | 3145     | 6618       | 6641         | 6651         | 6656         | 6658         |
| 13                        | 5693  | 2674     | 6618       | 6641         | 6651         | 6656         | 6658         |
| 18                        | 6547  | 1820     | 6618       | 6641         | 6651         | 6656         | 6658         |
| 48                        | 6547  | 1820     | 6618       | 6641         | 6651         | 6656         | 6658         |
| 3                         | 6920  | 1447     | 6920       | 6920         | 6920         | 6920         | 6920         |
| 35                        | 7293  | 1074     | 7293       | 7293         | 7293         | 7293         | 7293         |
| 49                        | 7308  | 1059     | 7308       | 7308         | 7308         | 7308         | 7308         |
| 10                        | 7413  | 954      | 7413       | 7413         | 7413         | 7413         | 7413         |
| 00                        | 046   |          | 0467       | 0467         | 0467         | 0467         | 0467         |
| 38                        |       |          |            | 9467         |              |              |              |
| 47                        |       |          |            | 9533<br>9622 | 9533<br>9622 | 9533<br>9622 | 9533<br>9622 |
| 22                        |       | -        |            | 9622         |              |              | 9622         |
| 43                        |       | -        |            | 9667         | 9667         |              | 9667         |
| 34                        |       | -        |            | 9840         |              |              |              |
| 14                        |       |          |            | 9880         |              |              |              |
|                           |       | _        |            |              |              |              |              |
| Average X                 | 8128  |          | 8316       | 8318         | 8319         | 8320         | 8320         |
| SD S                      | 1577  |          | 984        | 980          | 978          | 977          | 977          |
| robust average X*         | 8367  | new X*   | 8316       | 8318         | 8319         | 8320         | 8320         |
| robust stdev S*           | 1166  | new S*   | 1116       | 1111         | 1109         | 1108         | 1108         |
| δ= 1.5 <i>S</i> *         | 1749  |          | 1674       | 1667         | 1664         | 1662         | 1661         |
| Χ*-δ                      | 6618  |          | 6641       | 6651         | 6656         | 6658         | 6659         |
| X*+δ                      | 10116 |          | 9990       | 9985         | 9983         | 9982         | 9981         |
| Between Samples SD        | 965   | From hom | ogeneity t | est          |              |              |              |
|                           |       |          |            |              |              |              |              |
| new stdev for Homogeneity | 1469  |          |            |              |              |              |              |

Figure 2: Homogeneity test results by the participant laboratories

The new SD for the homogeneity test ( $\sigma_{r1}$ ) 1469 cells/L (Fig.2) is calculated using equation (D) where  $\sigma_r$  is the robust standard deviation and (*Ss*) is the between samples Standard deviation

$$\sigma_{r1} = \sqrt{\sigma_r^2 + s_s^2}$$

Using  $\sigma_{r1}$  instead of  $\sigma_r$  in the equation (E) below to calculate the number of replicate measurements needed for the criteria to be met (see fig.3)

$$\sigma_r/\sqrt{n} \leq 0.3\,\hat{\sigma}$$

(E)

D)

|           | $\sigma_{r1=} V1108^2 + 965^2$        |  |  |  |
|-----------|---------------------------------------|--|--|--|
|           | σr1=1469                              |  |  |  |
| criteria: | 1469/√3 < 0.3x 1108                   |  |  |  |
|           | n=3                                   |  |  |  |
|           | then 848 < 332                        |  |  |  |
|           | so n= 20 for the rule to be satisfied |  |  |  |

Figure 3: Number of replicate measurements

We find that for the rule to be satisfied each analyst would have to carry out 20 replicate measurements (n=20). As this is not very practical, the standard allows for the between sample SD to be added to the proficiency SD for each test item using equation (D) above to take into account the heterogeneity of the samples. In the case of the homogeneity test, we take the between sample SD calculated by the expert laboratory in fig.1 (965) and the SD calculated by the participants fig.2 (1108) to calculate the new standard deviation for the test (1469).

The stability study analysis (fig.4) was carried out on three samples a month after the homogeneity study by the expert laboratory to test the stability of the materials over time. A minimum number of replicate measurements was needed (n=3).

The results show that the sample average was  $7403\pm436$  cells/L compared to 7944 cells/L (fig. 1) for the homogeneity average To check whether the results meet the criteria, the following equation (F) below is applied.

$$\left|\overline{x}_{.r}-\overline{y}_{.r}\right| \leqslant 0,3\hat{\sigma}$$

F)

Where;

 $\overline{x}_{r}$  = Homogeneity study average

 $\overline{y}_{.r}$  = Stability study average

As figure 4 indicates the criteria is not met because the absolute difference of the homogeneity and stability averages (541) is larger than 0.3 times the SD for the proficiency test (318).

| CELLS / L       |            |        |           |             |         |              |         |
|-----------------|------------|--------|-----------|-------------|---------|--------------|---------|
|                 |            |        |           |             |         | Between test |         |
|                 |            | Sample | Test      | Test        | sample  | portion      |         |
|                 | Date       | number | portion 1 | portion 2   | average | range        | *2      |
|                 | 07/07/2013 | 137    | 8169      | 7606        | 7888    | 563          | 316969  |
|                 | 07/07/2013 | 172    | 6855      | 7700        | 7278    | 845          | 714025  |
|                 | 07/07/2013 | 31     | 7606      | 6479        | 7043    | 1127         | 1270129 |
|                 |            |        |           | Average:    | 7403    | Sum          | 2301123 |
|                 |            |        |           | SD          | 436     | P=           | 3       |
|                 |            |        | SD within | samples:    | 619     |              |         |
|                 |            |        | SD betwee | en samples: | 39      |              |         |
|                 |            |        |           |             |         |              |         |
|                 |            |        |           |             |         |              |         |
| stability check | criteria   |        | 7944      | 7403        | 541     | 318          |         |

Figure 4: Stability study results by expert laboratory

4.2 Outliers and missing values

Outliers in the data have been addressed by using the robust analysis as set out in Annex C algorithm A of ISO 13528. The robust estimates for this exercise have been derived by iterative calculation, that is, by convergence of the modified data (fig. 5).

In relation to missing values, the standard proposes that participants must report 0.59 n replicate measurements, so in the case of three replicates, at least two replicate results must be obtained for the data to be included in the calculation of the average and SD for the exercise using the values from the participants. Otherwise, these results won't be included in the calculation of statistics that affect other laboratories but they may be used for the calculation of their own.

So, the results of analyst 41 for the homogeneity test are not included in the calculations as only one result was returned from a possible three on the homogeneity test. All other results are fine.

Calculate initial values for  $x^*$  and  $s^*$  as:

 $x^* = median of x_i$  (*i* = 1, 2, ..., *p*)

 $s^* = 1,483 \text{ median of } |x_i - x^*|$  (*i* = 1, 2, ..., *p*)

Update the values of  $x^*$  and  $s^*$  as follows. Calculate:

$$\delta = 1,5s^*$$

For each  $x_i$  (i = 1, 2, ..., p), calculate:

$$x_i^* = \begin{cases} x^* - \delta, & \text{if } x_i < x^* - \delta \\ x^* + \delta, & \text{if } x_i > x^* + \delta \\ x_i, & \text{otherwise} \end{cases}$$

Calculate the new values of  $x^*$  and  $s^*$  from:

$$x^{*} = \sum x_{i}^{*} / p$$
  
$$s^{*} = 1,134 \sqrt{\sum (x_{i}^{*} - x^{*})^{2} / (p - 1)}$$

Figure 5: Iterative process

## 4.3 Analysts' Data

The results of the participants were collated using Excel spreadsheets for each test item. 47 analysts and 32 laboratories returned results from a total of 49 and 34 laboratories. There were four species of interest in the sample for this exercise: *C.granii* (fig.6), *C.diadema* (fig.7) *H.akashivo* (fig.8) and *G.instriatum* (fig.9).

Figures 10-13 show the modified results of figures 6-9 using algorithm A in annex C of ISO13528. These tables show the robust averages and standard deviations that will be used to calculate the limits for the Z-scores for each item.

The new standard deviation for each test item is, then calculated taking into account the heterogeneity of the samples, that is, the between samples standard deviation calculated from the homogeneity test (965) and the robust standard deviation using equation (D). This new standard deviation will be used to set the 2 and 3 sigma limits of the robust averages for each test item.

| ANALYST<br>CODE | SAMPLE CODES |     |     | Coscino  | Coscinodiscus granii (cells/L) |          |      |  |
|-----------------|--------------|-----|-----|----------|--------------------------------|----------|------|--|
|                 |              |     |     | sample 1 | sample 2                       | sample 3 |      |  |
| 3               | 53           | 183 | 101 | 3200     | 2760                           | 3880     | 3280 |  |
| 23              | 16           | 37  | 171 | 2560     | 3040                           | 1600     | 2400 |  |
| 16              | 7            | 31  | 236 | 1760     | 1800                           | 2440     | 2000 |  |
| 40              | 19           | 28  | 216 | 2000     | 5500                           | 500      | 2667 |  |
| 5               | 123          | 151 | 237 | 2000     | 3600                           | 2000     | 2533 |  |
| 44              | 10           | 34  | 69  | 2440     | 2600                           | 2200     | 2413 |  |
| 30              | 96           | 131 | 150 | 3160     | 2960                           | 2640     | 2920 |  |
| 18              | 115          | 119 | 61  | 2800     | 2200                           | 2960     | 2653 |  |
| 2               | 36           | 148 | 44  | 3040     | 2680                           | 2560     | 2760 |  |
| 13              | 52           | 130 | 155 | 1840     | 1960                           | 1840     | 1880 |  |
| 10              | 110          | 124 | 135 | 2520     | 2400                           | 2480     | 2467 |  |
| 28              | 77           | 124 | 147 | 1960     | 2240                           | 3000     | 2400 |  |
| 36              | 64           | 103 | 142 | 2200     | 2000                           | 1200     | 1800 |  |
| 11              | 75           | 94  | 156 | 2600     | 2320                           | 2200     | 2373 |  |
| 31              | 191          | 185 | 218 | 2000     | 1480                           | 1800     | 1760 |  |
| 38              | 51           | 87  | 186 | 2320     | 2200                           | 2280     | 2267 |  |
| 24              | 5            | 43  | 73  | 1330     | 3170                           | 3130     | 2543 |  |
| 25              | 184          | 210 | 195 | 1920     | 1840                           | 1280     | 1680 |  |
| 34              | 81           | 62  | 175 | 3240     | 2320                           | 1800     | 2453 |  |
| 20              | 161          | 32  | 58  | 147      | 309                            | 215      | 224  |  |
| 41              | 98           | 180 | 194 | 2600     | 2533                           | 1200     | 2111 |  |
| 1               | 27           | 192 | 213 | 2391     | 1870                           | 3174     | 2478 |  |
| 45              | 35           | 188 | 204 | 2783     | 1870                           | 2565     | 2406 |  |
| 29              | 42           | 144 | 221 | 2600     | 2520                           | 2600     | 2573 |  |
| 22              | 49           | 223 | 70  | 2800     | 2800                           | 2300     | 2633 |  |
| 39              | 6            | 21  | 238 | 2360     | 2400                           | 1880     | 2213 |  |
| 37              | 83           | 157 | 176 | 2200     | 2320                           | 2400     | 2307 |  |
| 12              | 63           | 45  | 25  | 3222     | 3055                           | 2652     | 2976 |  |
| 43              | 17           | 117 | 120 | 1960     | 2240                           | 3440     | 2547 |  |
| 9               | 4            | 197 | 205 | 1520     | 1080                           | 2360     | 1653 |  |
| 7               | 68           | 97  | 207 | 2360     | 2760                           | 3240     | 2787 |  |
| 14              | 187          | 76  | 169 | 1640     | 2240                           | 1520     | 1800 |  |
| 35              | 54           | 165 | 167 | 2920     | 2360                           | 2440     | 2573 |  |
| 8               | 30           | 72  | 136 | 2440     | 2880                           | 2960     | 2760 |  |
| 15              | 203          | 172 | 57  | 2440     | 2240                           | 2800     | 2493 |  |
| 4               | 93           | 126 | 143 | 2800     | 2733                           | 2567     | 2700 |  |
| 17              | 109          | 134 | 233 | 2520     | 2520                           | 3080     | 2707 |  |
| 6               | 149          | 219 | 179 | 2800     | 2560                           | 2600     | 2653 |  |
| 42              | 38           | 82  | 215 | 3640     | 2680                           | 3080     | 3133 |  |
| 27              | 88           | 209 | 225 | 1800     | 2360                           | 2440     | 2200 |  |
| 33              | 8            | 41  | 92  | 2640     | 3120                           | 2560     | 2773 |  |
| 19              | 199          | 173 | 231 | 2120     | 1960                           | 2400     | 2160 |  |
| 48              | 174          | 67  | 164 | 1308     | 1346                           | 1808     | 1487 |  |
| 49              | 59           | 105 | 190 | 1692     | 1538                           | 2308     | 1846 |  |
| 50              | 114          | 200 | 230 | 2038     | 2346                           | 1615     | 2000 |  |
| 46              | 78           | 178 | 182 | 2520     | 2640                           | 1160     | 2107 |  |
| 47              | 12           | 137 | 229 | 3400     | 3800                           | 3000     | 3400 |  |

Figure 6: Participants results for C.granii. not id= not identified; nr= no result

| ANALYST<br>CODE | SAMPLE CODES |     |     | Chaetoceros diadema (cells/L) |          |          | Average |
|-----------------|--------------|-----|-----|-------------------------------|----------|----------|---------|
|                 |              |     |     | sample 1                      | sample 2 | sample 3 |         |
| 3               | 53           | 183 | 101 | 6400                          | 7800     | 6640     | 6947    |
| 23              | 16           | 37  | 171 | 11920                         | 14800    | 11000    | 12573   |
| 16              | 7            | 31  | 236 | 14720                         | 13840    | 15920    | 14827   |
| 40              | 19           | 28  | 216 | not id                        | not id   | not id   | not id  |
| 5               | 123          | 151 | 237 | 3600                          | 2600     | 2800     | 3000    |
| 44              | 10           | 34  | 69  | 5000                          | 7880     | 2960     | 5280    |
| 30              | 96           | 131 | 150 | 9080                          | 11720    | 10240    | 10347   |
| 18              | 115          | 119 | 61  | 4440                          | 3400     | 7120     | 4987    |
| 2               | 36           | 148 | 44  | 14440                         | 12400    | 13480    | 13440   |
| 13              | 52           | 130 | 155 | 8960                          | 7360     | 7040     | 7787    |
| 10              | 110          | 124 | 135 | 13080                         | 12000    | 16320    | 13800   |
| 28              | 77           | 124 | 147 | 8160                          | 7040     | 8160     | 7787    |
| 36              | 64           | 103 | 142 | 5000                          | 6640     | 5880     | 5840    |
| 11              | 75           | 94  | 156 | 6320                          | 7760     | 9240     | 7773    |
| 31              | 191          | 185 | 218 | 10960                         | 11200    | 15000    | 12387   |
| 38              | 51           | 87  | 186 | 25420                         | 26650    | 24600    | 25557   |
| 24              | 5            | 43  | 73  | not id                        | not id   | not id   | not id  |
| 25              | 184          | 210 | 195 | 12800                         | 15000    | 12360    | 13387   |
| 34              | 81           | 62  | 175 | 13640                         | 14360    | 16880    | 14960   |
| 20              | 161          | 32  | 58  | 529                           | 559      | nr       | 544     |
| 41              | 98           | 180 | 194 | 0                             | 8200     | 1400     | 3200    |
| 1               | 27           | 192 | 213 | 13174                         | 12305    | 12957    | 12812   |
| 45              | 35           | 188 | 204 | 10827                         | 13870    | 10566    | 11754   |
| 29              | 42           | 144 | 221 | 10760                         | 14520    | 10000    | 11760   |
| 22              | 49           | 223 | 70  | 16600                         | 15400    | 21200    | 17733   |
| 39              | 6            | 21  | 238 | 10680                         | 9320     | 10080    | 10027   |
| 37              | 83           | 157 | 176 | 13320                         | 8600     | 11000    | 10973   |
| 12              | 63           | 45  | 25  | 17532                         | 18282    | 18731    | 18182   |
| 43              | 17           | 117 | 120 | 10480                         | 12280    | 10840    | 11200   |
| 9               | 4            | 197 | 205 | 15080                         | 14840    | 14920    | 14947   |
| 7               | 68           | 97  | 207 | 6760                          | 12560    | 7000     | 8773    |
| 14              | 187          | 76  | 169 | 8960                          | 10320    | 6480     | 8587    |
| 35              | 54           | 165 | 167 | 640                           | 560      | 1400     | 867     |
| 8               | 30           | 72  | 136 | 5920                          | 6480     | 4840     | 5747    |
| 15              | 203          | 172 | 57  | 12000                         | 12600    | 15120    | 13240   |
| 4               | 93           | 126 | 143 | 8900                          | 8767     | 10600    | 9422    |
| 17              | 109          | 134 | 233 | 9680                          | 11800    | 7160     | 9547    |
| 6               | 149          | 219 | 179 | 8520                          | 6760     | 7040     | 7440    |
| 42              | 38           | 82  | 215 | 8720                          | 9960     | 6480     | 8387    |
| 27              | 88           | 209 | 225 | 1880                          | 1560     | 2440     | 1960    |
| 33              | 8            | 41  | 92  | 7640                          | 6600     | 5640     | 6627    |
| 19              | 199          | 173 | 231 | 1080                          | 1000     | 1160     | 1080    |
| 48              | 174          | 67  | 164 | 115                           | 1231     | 1462     | 936     |
| 49              | 59           | 105 | 190 | 9923                          | 17154    | 4154     | 10410   |
| 50              | 114          | 200 | 230 | 7885                          | 6269     | 11346    | 8500    |
| 46              | 78           | 178 | 182 | 13680                         | 11320    | 7200     | 10733   |
| 47              | 12           | 137 | 229 | 16000                         | 8600     | 6200     | 10267   |

Figure 7: Participants results for C.diadema. not id= not identified; nr= no result

| ANALYST<br>CODE | SA  | MPLE COD | ES  | Heter    | Average                  |        |        |
|-----------------|-----|----------|-----|----------|--------------------------|--------|--------|
| CODE            |     |          |     | sample 1 | sample 1 sample 2 sample |        |        |
| 3               | 53  | 183      | 101 | 8240     | 6480                     | 9240   | 7987   |
| 23              | 16  | 37       | 171 | 7280     | 7000                     | 4400   | 6227   |
| 16              | 7   | 31       | 236 | 7240     | 8120                     | 5840   | 7067   |
| 40              | 19  | 28       | 216 | 5500     | 1500                     | 2500   | 3167   |
| 5               | 123 | 151      | 237 | not id   | not id                   | not id | not id |
| 44              | 10  | 34       | 69  | 1040     | 6360                     | 1520   | 2973   |
| 30              | 96  | 131      | 150 | 5160     | 5880                     | 6560   | 5867   |
| 18              | 115 | 119      | 61  | 3360     | 2720                     | 3120   | 3067   |
| 2               | 36  | 148      | 44  | 8040     | 5840                     | 3320   | 5733   |
| 13              | 52  | 130      | 155 | 4520     | 4880                     | 2520   | 3973   |
| 10              | 110 | 124      | 135 | 7760     | 6240                     | 7080   | 7027   |
| 28              | 77  | 124      | 147 | 9640     | 10600                    | 9480   | 9907   |
| 36              | 64  | 103      | 142 | 9400     | 9520                     | 8520   | 9147   |
| 11              | 75  | 94       | 156 | 7600     | 9400                     | 6040   | 7680   |
| 31              | 191 | 185      | 218 | 7000     | 7960                     | 10040  | 8333   |
| 38              | 51  | 87       | 186 | 4600     | 6080                     | 6640   | 5773   |
| 24              | 5   | 43       | 73  | 1200     | 2100                     | 700    | 1333   |
| 25              | 184 | 210      | 195 | 4640     | 3600                     | 3840   | 4027   |
| 34              | 81  | 62       | 175 | 6640     | 8760                     | 5920   | 7107   |
| 20              | 161 | 32       | 58  | 137      | 11                       | nr     | 74     |
| 41              | 98  | 180      | 194 | 0        | 1800                     | 1000   | 933    |
| 1               | 27  | 192      | 213 | 8348     | 6087                     | 6783   | 7073   |
| 45              | 35  | 188      | 204 | 8000     | 7739                     | 6174   | 7305   |
| 29              | 42  | 144      | 221 | 7560     | 3360                     | 5600   | 5507   |
| 22              | 49  | 223      | 70  | 4900     | 7200                     | 5500   | 5867   |
| 39              | 6   | 21       | 238 | 6520     | 6520                     | 8320   | 7120   |
| 37              | 83  | 157      | 176 | 6720     | 7240                     | 8600   | 7520   |
| 12              | 63  | 45       | 25  | 7385     | 6445                     | 6243   | 6691   |
| 43              | 17  | 117      | 120 | 7720     | 6960                     | 6080   | 6920   |
| 9               | 4   | 197      | 205 | 5120     | 5080                     | 5040   | 5080   |
| 7               | 68  | 97       | 207 | 2640     | 3560                     | 5760   | 3987   |
| 14              | 187 | 76       | 169 | 7960     | 6320                     | 5240   | 6507   |
| 35              | 54  | 165      | 167 | notid    | notid                    | not id | not id |
| 8               | 30  | 72       | 136 | 4480     | 5160                     | 5440   | 5027   |
| 15              | 203 | 172      | 57  | 13800    | 15760                    | 19440  | 16333  |
| 4               | 93  | 126      | 143 | 8600     | 9733                     | 5367   | 7900   |
| 17              | 109 | 134      | 233 | 10440    | 14280                    | 10080  | 11600  |
| 6               | 149 | 219      | 179 | 9280     | 11280                    | 10200  | 10253  |
| 42              | 38  | 82       | 215 | 15280    | 13800                    | 10560  | 13213  |
| 27              | 88  | 209      | 225 | 8040     | 8000                     | 9640   | 8560   |
| 33              | 8   | 41       | 92  | 14960    | 13560                    | 13520  | 14013  |
| 19              | 199 | 173      | 231 | 3920     | 4680                     | 3800   | 4133   |
| 48              | 174 | 67       | 164 | 1643     | 1096                     | 548    | 1096   |
| 49              | 59  | 105      | 190 | 2192     | 5692                     | 2538   | 3474   |
| 50              | 114 | 200      | 230 | 538      | 231                      | 38     | 269    |
| 46              | 78  | 178      | 182 | 3400     | 5440                     | 4160   | 4333   |
| 47              | 12  | 137      | 229 | 4400     | 6900                     | 5800   | 5700   |

Figure 8: Participants results for H.akashiwo. not id= not identified; nr= no result

| ANALYST<br>CODE | SAMPLE CODES |     |     | Gyrod    | Average  |          |       |
|-----------------|--------------|-----|-----|----------|----------|----------|-------|
| CODE            |              |     |     | sample 1 | sample 2 | sample 3 |       |
| 3               | 53           | 183 | 101 | 8560     | 8200     | 10920    | 9227  |
| 23              | 16           | 37  | 171 | 8960     | 9800     | 8560     | 9107  |
| 16              | 7            | 31  | 236 | 9200     | 10550    | 9760     | 9837  |
| 40              | 19           | 28  | 216 | 5500     | 3000     | 2000     | 3500  |
| 5               | 123          | 151 | 237 | 6800     | 4200     | 5200     | 5400  |
| 44              | 10           | 34  | 69  | 9240     | 8480     | 8840     | 8853  |
| 30              | 96           | 131 | 150 | 8840     | 8440     | 7320     | 8200  |
| 18              | 115          | 119 | 61  | 9400     | 7360     | 10160    | 8973  |
| 2               | 36           | 148 | 44  | 11760    | 9880     | 10320    | 10653 |
| 13              | 52           | 130 | 155 | 8240     | 7080     | 6600     | 7307  |
| 10              | 110          | 124 | 135 | 10000    | 8920     | 9240     | 9387  |
| 28              | 77           | 124 | 147 | 9320     | 8160     | 8800     | 8760  |
| 36              | 64           | 103 | 142 | 8920     | 9320     | 8120     | 8787  |
| 11              | 75           | 94  | 156 | 9520     | 8720     | 7760     | 8667  |
| 31              | 191          | 185 | 218 | 8920     | 8640     | 7680     | 8413  |
| 38              | 51           | 87  | 186 | 8720     | 9400     | 7880     | 8667  |
| 24              | 5            | 43  | 73  | 4200     | 8067     | 7500     | 6589  |
| 25              | 184          | 210 | 195 | 8640     | 8400     | 8640     | 8560  |
| 34              | 81           | 62  | 175 | 10440    | 10600    | 8000     | 9680  |
| 20              | 161          | 32  | 58  | 676      | 988      | 529      | 731   |
| 41              | 98           | 180 | 194 | 7200     | 7600     | 3400     | 6067  |
| 1               | 27           | 192 | 213 | 9261     | 8696     | 9261     | 9073  |
| 45              | 35           | 188 | 204 | 8826     | 7870     | 9174     | 8624  |
| 29              | 42           | 144 | 221 | 8800     | 9960     | 9120     | 9293  |
| 22              | 49           | 223 | 70  | 9300     | 9100     | 10500    | 9633  |
| 39              | 6            | 21  | 238 | 9360     | 9760     | 8560     | 9227  |
| 37              | 83           | 157 | 176 | 8520     | 8560     | 8400     | 8493  |
| 12              | 63           | 45  | 25  | 8056     | 8190     | 8593     | 8280  |
| 43              | 17           | 117 | 120 | 8480     | 9560     | 9520     | 9187  |
| 9               | 4            | 197 | 205 | 8200     | 8000     | 8640     | 8280  |
| 7               | 68           | 97  | 207 | 9080     | 9600     | 8960     | 9213  |
| 14              | 187          | 76  | 169 | 7360     | 8200     | 6920     | 7493  |
| 35              | 54           | 165 | 167 | 7680     | 8400     | 10200    | 8760  |
| 8               | 30           | 72  | 136 | 8600     | 8400     | 8640     | 8547  |
| 15              | 203          | 172 | 57  | 7680     | 9080     | 10120    | 8960  |
| 4               | 93           | 126 | 143 | 8500     | 8500     | 10267    | 9089  |
| 17              | 109          | 134 | 233 | 7640     | 7760     | 8120     | 7840  |
| 6               | 149          | 219 | 179 | 7920     | 9320     | 8920     | 8720  |
| 42              | 38           | 82  | 215 | 8800     | 9520     | 8800     | 9040  |
| 27              | 88           | 209 | 225 | 7920     | 7200     | 8600     | 7907  |
| 33              | 8            | 41  | 92  | 10040    | 9880     | 9600     | 9840  |
| 19              | 199          | 173 | 231 | 9520     | 9000     | 9840     | 9453  |
| 48              | 174          | 67  | 164 | 6000     | 2923     | 5115     | 4679  |
| 49              | 59           | 105 | 190 | 8731     | 16654    | 7846     | 11077 |
| 50              | 114          | 200 | 230 | 8538     | 8423     | 8538     | 8500  |
| 46              | 78           | 178 | 182 | 8960     | 9680     | 7240     | 8627  |
| 47              | 12           | 137 | 229 | 7800     | 8700     | 9200     | 8567  |

Figure 9: Participants results for G.instriatum. not id= not identified; nr= no result

| <b>•</b>               | ( <b>_</b> † |            |              |              |
|------------------------|--------------|------------|--------------|--------------|
| ANALYST CODE           | Average      | X-X*       | X*i          | it2          |
| 20                     | 224          | 2230       | 1890         | 1890         |
| 48                     | 1487         | 966        | 1890         | 1890         |
| 9                      | 1653         | 800        | 1890         | 1890         |
| 25                     | 1680         | 773        | 1890         | 1890         |
| 31                     | 1760         | 693        | 1890         | 1890         |
| 36                     | 1800         | 653        | 1890         | 1890         |
| 14                     | 1800         | 653        | 1890         | 1890         |
| 49                     | 1846         | 607        | 1890         | 1890         |
| 13                     | 1880         | 573        | 1890         | 1890         |
| 50                     | 2000         | 453        | 2000         | 2000         |
| 16                     | 2000         | 453        | 2000         | 2000         |
| 46                     | 2107         | 347        | 2107         | 2107         |
| 41                     | 2111         | 342        | 2111         | 2111         |
| 19                     | 2160         | 293        | 2160         | 2160         |
| 27<br>39               | 2200         | 253        | 2200<br>2213 | 2200<br>2213 |
| 39                     | 2213<br>2267 | 240<br>187 | 2213         | 2213         |
| 37                     | 2307         | 187        | 2307         | 2307         |
| 11                     | 2307         | 80         | 2307         | 2307         |
| 23                     | 2373         | 53         | 2400         | 2373         |
| 23                     | 2400         | 53         | 2400         | 2400         |
| 45                     | 2400         | 47         | 2400         | 2400         |
| 44                     | 2400         | 40         | 2400         | 2400         |
| 34                     | 2413         | 40         | 2453         | 2413         |
| 10                     | 2455         | 13         | 2467         | 2467         |
| 1                      | 2478         | 25         | 2478         | 2478         |
| 15                     | 2493         | 40         | 2493         | 2493         |
| 5                      | 2533         | 80         | 2533         | 2533         |
| 24                     | 2543         | 90         | 2543         | 2543         |
| 43                     | 2547         | 93         | 2547         | 2547         |
| 29                     | 2573         | 120        | 2573         | 2573         |
| 35                     | 2573         | 120        | 2573         | 2573         |
| 22                     | 2633         | 180        | 2633         | 2633         |
| 18                     | 2653         | 200        | 2653         | 2653         |
| 6                      | 2653         | 200        | 2653         | 2653         |
| 40                     | 2667         | 213        | 2667         | 2667         |
| 4                      | 2700         | 247        | 2700         | 2700         |
| 17                     | 2707         | 253        | 2707         | 2707         |
| 2                      | 2760         | 307        | 2760         | 2760         |
| 8                      | 2760         | 307        | 2760         | 2760         |
| 33                     | 2773         | 320        | 2773         | 2773         |
| 7                      | 2787         | 333        | 2787         | 2787         |
| 30                     | 2920         | 467        | 2920         | 2920         |
| 12                     | 2976         | 523        | 2976         | 2976         |
| 42                     | 3133         | 680        | 3017         | 3017         |
| 3                      | 3280         | 827        | 3017         | 3017         |
| 47                     | 3400         | 947        | 3017         | 3017         |
| Average X              | 2361         |            | 2406         | 2406         |
| SD S                   | 531          |            | 357          | 357          |
| robust average X*      | 2453         |            | 2406         | 2406         |
| robust stdev S*        | 376          |            | 529          | 529          |
|                        |              |            |              |              |
| δ= 1.5 <i>S</i> *      | 564          |            | 794          | 794          |
| Χ*-δ                   | 1890         |            | 1612         | 1612         |
| Χ*+δ                   | 3017         |            | 3200         | 3200         |
| Between Samples SD     |              | From hom   | ogeneity tes |              |
|                        |              |            |              | ~            |
| now stdou for C granii | 1101         |            |              |              |
| new stdev for C.granii | 1101         |            |              |              |

Figure 10: Iteration for C.granii

| <b>•</b>                | <b>↓</b>       |              |                |                |
|-------------------------|----------------|--------------|----------------|----------------|
| ANALYST CODE            | Average        | X-X*         | X*i            | it2            |
| 20                      | 544            | 9003         | 2814           | 2814           |
| 35                      | 867            | 8680         | 2814           | 2814           |
| 48                      | 936            | 8611         | 2814           | 2814           |
| 19                      | 1080           | 8467         | 2814           | 2814           |
| 27                      | 1960           | 7587         | 2814           | 2814           |
| 5                       | 3000           | 6547         | 3000           | 3000           |
| 41                      | 3200           | 6347         | 3200           | 3200           |
| 18                      | 4987           | 4560         | 4987           | 4987           |
| 44                      | 5280           | 4267         | 5280           | 5280           |
| 8                       | 5747           | 3800         | 5747           | 5747           |
| 36                      | 5840<br>6627   | 3707<br>2920 | 5840<br>6627   | 5840<br>6627   |
| 3                       | 6947           | 2920         | 6947           | 6947           |
| 6                       | 7440           | 2107         | 7440           | 7440           |
| 11                      | 7773           | 1773         | 7440           | 7773           |
| 13                      | 7787           | 1760         | 7787           | 7787           |
| 28                      | 7787           | 1760         | 7787           | 7787           |
| 42                      | 8387           | 1160         | 8387           | 8387           |
| 50                      | 8500           | 1047         | 8500           | 8500           |
| 14                      | 8587           | 960          | 8587           | 8587           |
| 7                       | 8773           | 773          | 8773           | 8773           |
| 4                       | 9422           | 124          | 9422           | 9422           |
| 17                      | 9547           | 0            | 9547           | 9547           |
| 39                      | 10027          | 480          | 10027          | 10027          |
| 47                      | 10267          | 720          | 10267          | 10267          |
| 30                      | 10347          | 800          | 10347          | 10347          |
| 49                      | 10410          | 864          | 10410          | 10410          |
| 46                      | 10733          | 1187         | 10733          | 10733          |
| 37                      | 10973          | 1427         | 10973          | 10973          |
| 43                      | 11200          | 1653         | 11200          | 11200          |
| 45                      | 11754          | 2207         | 11754          | 11754          |
| 29                      | 11760          | 2213         | 11760          | 11760          |
| 31<br>23                | 12387<br>12573 | 2840         | 12387<br>12573 | 12387<br>12573 |
| 25                      | 12573          | 3027<br>3265 | 12575          | 12373          |
| 15                      | 13240          | 3693         | 13240          | 13240          |
| 25                      | 13240          | 3840         | 13240          | 13240          |
| 2                       | 13440          | 3893         | 13440          | 13440          |
| 10                      | 13800          | 4253         | 13800          | 13800          |
| 16                      | 14827          | 5280         | 14827          | 14827          |
| 9                       | 14947          | 5400         | 14947          | 14947          |
| 34                      | 14960          |              | 14960          | 14960          |
| 22                      | 17733          | 8187         | 16279          | 16279          |
| 12                      | 18182          | 8635         | 16279          | 16279          |
| 38                      | 25557          | 16010        | 16279          | 16279          |
| 40                      | not id         | not id       | not id         | not id         |
| 24                      | not id         | not id       | not id         | not id         |
| Average X               | 9474           |              | 9386           | 9386           |
| SD <i>S</i>             | 5078           |              | 4098           | 4098           |
| robust average X*       | 9547           |              | 9386           | 9386           |
| robust stdev S*         | 4489           |              | 6077           | 6077           |
| δ= 1.5 <i>S</i> *       | 6733           |              | 9115           | 9115           |
| Χ*-δ                    | 2814           |              | 271            | 271            |
| Χ*+δ                    | 16279          |              | 18501          | 18501          |
| Between Samples SD      | 965            | From hom     | ogeneity t     | est            |
|                         |                |              |                |                |
| new stdev for C.diadema | 6153           |              |                |                |
|                         |                |              |                |                |

Figure 11: Iteration for C.diadema

|                          | ]            |            |              |              |
|--------------------------|--------------|------------|--------------|--------------|
| ANALYST CODE             | Average      | X-X*       | X*i          | it2          |
| 20                       | 74           | 6153       | 2015         | 2015         |
| 50                       | 269          | 5957       | 2015         | 2015         |
| 41                       | 933          | 5293       | 2015         | 2015         |
| 48                       | 1096         | 5131       | 2015         | 2015         |
| 24                       | 1333         | 4893       | 2015         | 2015         |
| 44                       | 2973         | 3253       | 2973         | 2973         |
| 18                       | 3067         | 3160       | 3067         | 3067         |
| 40                       | 3167         | 3060       | 3167         | 3167         |
| 49                       | 3474         | 2752       | 3474         | 3474         |
| 13                       | 3973         | 2253       | 3973         | 3973         |
| 7                        | 3987         | 2240       | 3987         | 3987         |
| 25                       | 4027         | 2200       | 4027         | 4027         |
| 19                       | 4133         | 2093       | 4133         | 4133         |
| 46                       | 4333         | 1893       | 4333         | 4333         |
| 8                        | 5027         | 1200       | 5027         | 5027         |
| 9                        | 5080         | 1147       | 5080         | 5080         |
| 29                       | 5507         | 720        | 5507         | 5507         |
| 47                       | 5700         | 527        | 5700         | 5700         |
| 2                        | 5733         | 493        | 5733         | 5733         |
| 38                       | 5773         | 453        | 5773         | 5773         |
| 30                       | 5867         | 360        | 5867         | 5867         |
| 22                       | 5867         | 360        | 5867         | 5867         |
| 23                       | 6227         | 0          | 6227         | 6227         |
| 14<br>12                 | 6507<br>6691 | 280        | 6507<br>6691 | 6507<br>6691 |
| 43                       | 6920         | 464<br>693 | 6920         | 6920         |
| 10                       | 7027         | 800        | 7027         | 7027         |
| 16                       | 7027         | 840        | 7027         | 7027         |
| 1                        | 7073         | 840        | 7073         | 7073         |
| 34                       | 7107         | 880        | 7107         | 7107         |
| 39                       | 7120         | 893        | 7120         | 7120         |
| 45                       | 7305         | 1078       | 7305         | 7305         |
| 37                       | 7520         | 1293       | 7520         | 7520         |
| 11                       | 7680         | 1453       | 7680         | 7680         |
| 4                        | 7900         | 1673       | 7900         | 7900         |
| 3                        | 7987         | 1760       | 7987         | 7987         |
| 31                       | 8333         | 2107       | 8333         | 8333         |
| 27                       | 8560         | 2333       | 8560         | 8560         |
| 36                       | 9147         | 2920       | 9147         | 9147         |
| 28                       | 9907         |            | 9907         | 9907         |
| 6                        | 10253        | 4027       | 10253        | 10253        |
| 17                       | 11600        |            | 10438        | 10438        |
| 42                       | 13213        | 6987       | 10438        | 10438        |
| 33                       | 14013        | 7787       | 10438        | 10438        |
| 15                       | 16333        | 10107      | 10438        | 10438        |
| 5                        | not id       | not id     |              | not id       |
| 35                       | not id       | not id     | not id       | not id       |
| Average X                | 6286         |            | 6130         | 6130         |
| SD S                     | 3438         |            | 2555         | 2555         |
|                          |              |            |              |              |
| robust average X*        | 6227         |            | 6130         | 6130         |
| robust stdev S*          | 2808         |            | 3789         | 3789         |
| δ= 1.5 <i>S</i> *        | 4212         |            | 5684         | 5684         |
| Χ*-δ                     | 2015         |            | 446          | 446          |
| X*+δ                     |              |            |              |              |
|                          | 10438        |            | 11814        | 11814        |
| Between Samples SD       | 965          | From h     | nomogenei    | ty test      |
| new stdev for H.akashiwo | 3910         |            |              |              |
|                          |              | •          |              |              |

Figure 12: Iteration for H.akashiwo

|                            | <b>_</b> †   |            |              |              |
|----------------------------|--------------|------------|--------------|--------------|
| ANALYST CODE               | Average      | X-X*       | X*i          | it2          |
| 20                         | 731          | 7989       | 7682         | 7682         |
| 40                         | 3500         | 5220       | 7682         | 7682         |
| 48                         | 4679         | 4041       | 7682         | 7682         |
| 5                          | 5400         | 3320       | 7682         | 7682         |
| 41                         | 6067         | 2653       | 7682         | 7682         |
| 24                         | 6589         | 2131       | 7682         | 7682         |
| 13                         | 7307         | 1413       | 7682         | 7682         |
| 14                         | 7493         | 1227       | 7682         | 7682         |
| 17                         | 7840         | 880        | 7840         | 7840         |
| 27                         | 7907         | 813        | 7907         | 7907         |
| 30                         | 8200         | 520        | 8200         | 8200         |
| 12                         | 8280         | 440        | 8280         | 8280         |
| 9                          | 8280         | 440        | 8280         | 8280         |
| 31                         | 8413         | 307        | 8413         | 8413         |
| 37                         | 8493         | 227        | 8493         | 8493         |
| 50                         | 8500         | 220        | 8500         | 8500         |
| 8                          | 8547         | 173        | 8547         | 8547         |
| 25                         | 8560         | 160        | 8560         | 8560         |
| 47                         | 8567         | 153        | 8567         | 8567         |
| 45                         | 8624         | 96         | 8624         | 8624         |
| 46                         | 8627         | 93         | 8627         | 8627         |
| 11                         | 8667         | 53         | 8667         | 8667         |
| 38                         | 8667         | 53         | 8667         | 8667         |
| 6                          | 8720         | 0          | 8720         | 8720         |
| 28                         | 8760         | 40         | 8760         | 8760         |
| 35                         | 8760         | 40         | 8760         | 8760         |
| 36                         | 8787         | 67         | 8787         | 8787         |
| 44                         | 8853         | 133        | 8853         | 8853         |
| 15                         | 8960         | 240        | 8960         | 8960         |
| 18                         | 8973         | 253        | 8973         | 8973         |
| <u> </u>                   | 9040<br>9073 | 320<br>353 | 9040<br>9073 | 9040<br>9073 |
| 4                          | 9075         | 369        | 9075         | 9075         |
| 23                         | 9107         | 387        | 9107         | 9089         |
| 43                         | 9107         | 467        | 9187         | 9187         |
| 7                          | 9213         | 407        | 9213         | 9213         |
| 3                          | 9213         | 507        | 9213         | 9213         |
| 39                         | 9227         | 507        | 9227         | 9227         |
| 29                         | 9293         | 573        | 9293         | 9293         |
| 10                         | 9387         | 667        | 9387         | 9387         |
| 19                         | 9453         | 733        | 9453         | 9453         |
| 22                         | 9633         | 913        | 9633         | 9633         |
| 34                         | 9680         | 960        | 9680         | 9680         |
| 16                         | 9837         | 1117       | 9758         | 9758         |
| 33                         | 9840         | 1120       | 9758         | 9758         |
| 2                          | 10653        | 1933       | 9758         | 9758         |
| 49                         | 11077        | 2357       | 9758         | 9758         |
| Average X                  | 8335         |            | 8704         | 8704         |
| SD S                       | 1778         |            | 660          | 660          |
| robust average X*          | 8720         |            | 8704         | 8704         |
| robust stdev S*            | 692          |            | 978          | 978          |
| δ= 1.5 <i>S*</i>           | 1038         |            | 1467         | 1467         |
| Χ*-δ                       | 7682         |            | 7237         | 7237         |
| Χ*+δ                       | 9758         |            | 10171        | 10171        |
| Between Samples SD         | 965          | From hom   | ogeneity tes |              |
|                            |              |            |              |              |
| new stdev for G.instriatum | 1374         |            |              |              |

Figure 13: Iteration for G.instriatum

#### 4.4 Assigned value and its standard uncertainty

The assigned values (robust mean and standard deviation) for a test material is calculated as explained before using algorithm A in annex c from the consensus values of the participants (Figs. 10-13). The standard uncertainty of the assigned value can then be calculated using the equation (G) below;

$$u_X = 1,25 \times s^* / \sqrt{p}$$
G)

Where;

 $\mathcal{U}_{x}$  = Standard uncertainty of the assigned value,

 $s^*$  = robust standard deviation for the test

p = number of analysts

|                                        | C.granii | C.diadema | H.akashiwo | G.instriatum | Homogeneity |
|----------------------------------------|----------|-----------|------------|--------------|-------------|
| Robust mean x*                         | 2406     | 9386      | 6130       | 8704         | 8320        |
| Robust Stdev s*                        | 529      | 6077      | 3789       | 978          | 1108        |
| Standard Ux                            | 97       | 1132      | 706        | 178          | 204         |
| n=                                     | 47       | 45        | 45         | 47           | 46          |
| if Ux < 0.3xSTdev                      | 159      | 1823      | 1137       | 293          | 332         |
| then Ux is negligible                  | neg      | neg       | neg        | neg          | neg         |
| The equation is satisfied in all cases |          |           |            |              |             |

Figure 14: Assigned value and standard uncertainty for the test.

If  $U_x$  is less than 0.3 times the standard deviation for the test, then this uncertainty is negligible for the test material. In our case, all our test materials satisfy the equation.

#### 4.5 Comparison of the assigned value

When the consensus values from the participants are used to calculate the standard uncertainty of the assigned values, the values can then be compared against a reference value from an expert laboratory. We used the homogeneity test result to compare this value against the value calculated by the participants using equation (H) below:

$$\sqrt{\frac{(1,25s^*)^2}{p} + u_X^2}$$
H)

Where;

 $M_{\chi}$  = Standard uncertainty of the assigned value,

 $s^*$  robust standard deviation for the test

p = number of analysts

If the difference is more than twice its uncertainty, then possible reasons need to be sought regarding bias. In this case the difference (376) is less than twice the uncertainty (577), so the rule is satisfied.

|                      | C.granii                               | C.diadema | H.akashiwo                                                             | G.instriatum | Homogeneity |   |                       | Homogeneity test |
|----------------------|----------------------------------------|-----------|------------------------------------------------------------------------|--------------|-------------|---|-----------------------|------------------|
| Robust mean x*       | 2406                                   | 9386      | 6130                                                                   | 8704         | 8320        | ) | Reference value mean  | 794              |
| Robust Stdev s*      | 529                                    | 6077      | 3789                                                                   | 978          | 1108        |   | Reference value stdev | 106              |
| Standard Ux          | 97                                     | 1132      | 706                                                                    | 178          | 204         |   |                       |                  |
| n=                   | 47                                     | 45        | 45                                                                     | 47           | 46          |   |                       |                  |
| if Ux < 0.3xSTdev    | 159                                    | 1823      | 1137                                                                   | 293          | 332         |   |                       |                  |
| then Ux is negligibl | e neg                                  | neg       | neg                                                                    | neg          | neg         |   |                       |                  |
| The equation is sati | The equation is satisfied in all cases |           |                                                                        |              |             |   |                       |                  |
|                      |                                        |           |                                                                        |              |             |   |                       |                  |
|                      |                                        |           | Comparison with assigned value                                         |              |             |   |                       |                  |
|                      |                                        |           | x *-X                                                                  | 376          |             |   |                       |                  |
|                      |                                        |           | Uncertainty                                                            | 289          | 577         |   |                       |                  |
|                      |                                        |           | If diff. Is more than twice its Uncertainty then rule is not satisfied |              |             |   |                       |                  |

Figure 15: Comparison of the assigned value

# 4.6 Calculation of performance statistics

# 4.6.1 Estimates of laboratory bias

Estimates of laboratory bias indicate results are normally distributed around zero for all measurands (Fig. 16). Most results are within one standard deviation of each other. The percentage difference graph by measurand (fig. 17) suggests that the spread of results across zero is larger on the *C.diadema* and *H.akashiwo* counts and tighter on the rest. It also shows green lines and red lines which correspond to warning and action signal limits.



Figure 16: Estimates of analyst bias using Z-scores by test item



Figure 17: Percentage difference by test item

# 4.6.2 Probability plots by % rank



Figure 18: Probability plot for C.granii



Figure 19: Probability plot for C.diadema



Figure 20: Probability plot for H.akashiwo



Figure 21: Probability plot for G.instriatum

The probability plots using percentage rank in the x axis is an easy way to show the laboratories reporting the most extreme results for each measurand. The laboratory with the lowest result is assigned rank 1, the next lowest result is rank 2 and so on until the laboratory ranked with the highest result. This analysis doesn't assume that the data follows any particular probability distribution.

# 4.6.3 Z-scores

The z-scores derived using the robust averages and standard deviations (figs. 10-13) are tabulated and found in annex IX. Figure 22 shows the warning (2SD) and action (3SD) limits for each measurand using the robust standard deviations and taking into account the heterogeneity of the samples. The graphs (figs. 23-26) show the Z-scores of each analyst using this data.

|             | C.granii | C.diadema | H.akashiwo | G.instriatum |
|-------------|----------|-----------|------------|--------------|
| Robust mean | 2406     | 9386      | 6130       | 8704         |
| new Stdev   | 1101     | 6153      | 3910       | 1374         |
| σ*3.0       | 3303     | 18459     | 11730      | 4122         |
| σ*2.0       | 2202     | 12306     | 7820       | 2748         |
| σ*-2.0      | -2202    | -12306    | -7820      | -2748        |
| σ*-3.0      | -3303    | -18459    | -11730     | -4122        |

Figure 22: Robust mean and standard deviation limits for Z-scores

There is a warning signal in the *C.diadema* count for analyst 38, two action signals for analysts 33 and 15 in the *H.akashiwo* count and two warning (analysts 48, 5) and two action (analysts 20, 40) signals in the *G.instriatum* count.



Figure 23: Z-scores for C.granii



Figure 24: Z-scores for *C.diadema* 



Figure 25: Z-scores for H.akashiwo



Figure 26: Z-scores for G.instriatum

# 4.7 Combined performance scores

# 4.7.1 Histograms

The histograms in figures 27-30 show the frequency of warning and action signals by measurand.



Figure 27: Histogram of C.granii



Figure 28: Histogram of *C.diadema* 



Figure 29: Histogram of H.akashiwo



Figure 30: Histogram of G.instriatum

#### 4.7.2 Bar plots of standardized laboratory bias

This bar plot charts the z-scores of all measurands by analyst. This plot reveals a cause of bias for analysts 20, 41 and 48. These three analysts have tended to underestimate all their counts. In some cases, these are above the warning and action signals. These analysts should study the cause of this as it could point out to a methodology issue.



Figure 31: Bar plot of Z-scores of all measurands by analyst

# 4.7.3 Plots of repeatability standard deviation

The plots of repeatability standard deviations are used to identify analysts whose average and standard deviation are unusual. They assume that the data is normally distributed and the null hypothesis is that there are no differences between the analyst means and standard deviations using the van Nuland circle technique (figs. 32-35) for each measurand. It shows that the averages for *C.diadema* (fig. 33) and *H.akashiwo* (fig. 34) are unusually spread across the consensus mean with a wide spread of results suggesting a difficulty assessing the density of these cell counts in the samples.



Figure 32: Plot of repeatability standard deviation of C.granii



Figure 33: Plot of repeatability standard deviation of C.diadema



Figure 34: Plot of repeatability standard deviation of H.akashiwo



Figure 35: Plot of repeatability standard deviation of G.instriatum
#### 4.8 Qualitative data

Figure 36 shows the answers given by analysts to the identification of the species spiked in the samples. Participants found the species *C.granii* and *H.akashiwo*, the easiest to identify with nearly perfect scores for both. *C.diadema* was one of the most difficult species to identify with most participants deciding to go to genus level only and 12 participants to species level. Six identified correctly the species but there were no incorrect answers at genus level. *G.instriatum* was the most difficult of all the species to identify with a total of 18 correct answers to species level and 37 to genus level. Also, ten incorrect answers were given, eight as *Gimnodinium catenatum* and two as *Karenia mikimotoi*.

|                       | np | Answers | genus<br>correct | Species | not id | other<br>answers |           |            |           |           |
|-----------------------|----|---------|------------------|---------|--------|------------------|-----------|------------|-----------|-----------|
| Coscinodiscus granii  | 2  | 47      | 47               | 46      | 0      | 1 Concinr        | nus       |            |           |           |
| Chaetoderos diadema   | 2  | 47      | 45               | 6       | 2      | 33 Hyaloc        | hate      | 5 lorenzia | nus       | 1 didymus |
| Heterosigma akashiwo  | 2  | 47      | 45               | 45      | 2      | 0                |           |            |           |           |
| Gyrodinium instriatum | 2  | 47      | 37               | 18      | 0      | 19 sp.           | 8 G.caten | atum       | 2 K.mikin | notoi     |

Np= not participated Not id= not identified

Figure 36: Qualitative data by measurand

#### 4.9 Ocean Teacher online HAB quiz

The online HAB quiz consisted of 14 questions, annex X shows the results of each analyst by question and the final grade by analyst and the statistics of each question at the bottom. Below (fig 37) shows the final grades by analyst and laboratory.

| Analyst<br>code 🖵 | % correct | Analyst<br>code 🖵 | % correct |
|-------------------|-----------|-------------------|-----------|
| 40                | 100.0     | 48                | 100.0     |
| 13                | 100.0     | 31                | 100.0     |
| 25                | 100.0     | 16                | 100.0     |
| 45                | 100.0     | 35                | 100.0     |
| 49                | 100.0     | 18                | 98.6      |
| 30                | 100.0     | 41                | 97.7      |
| 43                | 100.0     | 11                | 92.9      |
| 17                | 100.0     | 47                | 92.9      |
| 34                | 100.0     | 20                | 92.9      |
| 8                 | 100.0     | 9                 | 92.9      |
| 15                | 100.0     | 24                | 92.9      |
| 27                | 100.0     | 6                 | 92.9      |
| 46                | 100.0     | 36                | 92.9      |
| 38                | 100.0     | 29                | 92.9      |
| 44                | 100.0     | 28                | 92.9      |
| 42                | 100.0     | 10                | 92.9      |
| 50                | 100.0     | 39                | 85.7      |
| 12                | 100.0     | 2                 | 85.7      |
| 33                | 100.0     | 3                 | 85.7      |
| 23                | 100.0     | 37                | 85.7      |
| 4                 | 100.0     | 5                 | 82.9      |
| 19                | 100.0     | 14                | 71.4      |
| 1                 | 100.0     |                   |           |

Figure 37: Oceanteacher HAB quiz grades by analyst

The results (fig 37) suggest a high rate of perfect scores for this quiz. The cumulative frequency of scores (fig. 38) shows that 27 analysts, that is 60% of all analysts had a 100% score with another 12 analysts above 90% (29% of all analysts) and only 13.3 % of analysts below this mark. This suggests a high standard for most analysts involved.

| Variable<br>ANALYST CODE | Grade<br>71.4<br>82.9<br>85.7<br>92.9<br>97.7 | Count<br>1<br>4<br>10<br>1 | N<br>1<br>4<br>10<br>1 | N*<br>0<br>0<br>0<br>0 | CumN<br>1<br>2<br>6<br>16<br>17 | Percent<br>2.2222<br>2.2222<br>8.8889<br>22.2222<br>2.2222<br>2.2222 | CumPct<br>2.222<br>4.444<br>13.333<br>35.556<br>37.778 |
|--------------------------|-----------------------------------------------|----------------------------|------------------------|------------------------|---------------------------------|----------------------------------------------------------------------|--------------------------------------------------------|
|                          | 97.7                                          | 1                          | 1                      | 0                      | 17                              | 2.2222                                                               | 37.778                                                 |
|                          | 98.6                                          | 1                          | 1                      | 0                      | 18                              | 2.2222                                                               | 40.000                                                 |
|                          | 100.0                                         | 27                         | 27                     | 0                      | 45                              | 60.0000                                                              | 100.000                                                |

Figure 38: Cumulative percentage of correct answers by analyst

Figure 39 a value plot of correct answers by question show that the majority of the questions average above 90% except for Q8. This was the worst answered question with a 73% on average correct responses (see annex X).



Figure 39: Individual value plot of % correct answers by question

There were some problems with scores arising from 'short answer' question types where grammar errors, punctuation or similar answers were given as incorrect. This is a software related problem not easily resolved as the answers given by analysts have to match perfectly the one written in the programme. Therefore, the results had to be filtered in Excel to update some scores. There was another issue regarding the naming authority and use of synonyms in answers as in Q10 where the name *Zygabikodinium* currently regarded as a synonym of *Preperidinium* was accepted as correct.

#### 5. Discussion

The present format of this intercomparison exercise has been in use since 2010 and it appears to be a successful working model. This test is divided into two clearly defined sections; an online HAB quiz test set up in a remote platform accessed via the web and the identification and quantification of marine algae in lugol's preserved water samples. These are generally spiked with cultured material, which allows for a better control of the spiked material in terms of their cell concentration and their identity.

#### Identification and enumeration on preserved water samples

The identification and enumeration exercise has been prepared in a similar fashion to previous years but a number of changes have taken place in relation to the use of statistics, this time, we are following the statistical methods laid out in ISO13528 to calculate the performance statistics for the test. Also, some of the forms used to write the results of the test have been re-vamped. The enumeration and identification logsheets (See Annex II and III), which in previous years were set up as a Word document where analysts entered their results and calculations, this time were set up as an Excel spreadsheet.

The Excel spreadsheet contains an embedded reduced marine phytoplankton species list which is linked to the identification logsheet table and appears as a dropdown menu list, where analysts must choose the right entries for each sample. The advantages of using the forms set up in this way to include the analysts' results are various but primarily, the results are always readable, numerical transcription errors are avoided and no interpretation of the results is needed as it avoids identifications like e.g. unidentified armoured dinoflagellate, centric diatom, naked dinoflagellates, etc. There are also some disadvantages, as the reduced list can be construed to be an aid to the identification of the species and a deviation to the method.

The results of the exercise have been processed similarly to previous years particularly in relation to using the consensus values of all the analysts to form the basis of the final Z-scores. However, there are definite and important changes to the way we arrive at these averages and confidence interval values.

The new way of calculating these values using the robust averages and standard deviations from ISO 13528 is a definitive departure from previous years. ISO 13528 is the standard used for statistical methods in proficiency testing by interlaboratory comparisons. It describes sound statistical methods and recommendations of their use which can be applied to demonstrate unacceptable levels of laboratory bias. It

gives the statistical guidelines for the interpretation of tests and it is to be used as the reference document in future exercises. This standard is only applicable to quantitative data but not qualitative.

#### Homogeneity and stability test

A homogeneity and stability test showed that the samples didn't meet the assessment criteria set out in ISO 13528. The standard, however, gives various ways of working around this. The first step is to check the sample preparation of the materials. The materials are homogenized manually and this procedure for sample homogenization it is best practice and widely used. Lots of work has gone into the preparation of these materials over the years and while this methodology is not perfect, it is the best and simplest available protocol.

The data also shows that the average and standard deviation of the homogeneity samples either analysed by the expert laboratory (7944  $\pm$ 1061) (fig. 1) or the participants (8320 $\pm$ 1108) (fig. 2) are reasonably close, a standard deviation of 1000 cells/L is the equivalent of 25 cell difference between samples, which in my view doesn't look like a big difference. We need to think also in terms of the difficulties in homogenizing different materials in terms of size, shape, their fragility, cells in chains, preservation integrity and so on. In conclusion phytoplankton species are not easy test materials to homogenize and perhaps this is the best we can do. There are, other methods for homogenizing samples automatically and we could in future exercises use and compare these automated techniques against our manual method, see if homogeneity and stability improves.

ISO 17043 in note 3 says: "In some cases, materials that are not sufficiently homogeneous or stable are the best available; in such cases, they can still be useful as proficiency test items, provided that the uncertainties of the assigned values or the evaluation of results take due account of this". We have calculated the standard uncertainty of the assigned values (fig. 14) and we have found that in all the test items used in this round the standard uncertainty is negligible. Also, when the consensus values form the participants are used, the assigned value can be compared with a reference value in order to ascertain that there is no bias in the method. We have used the data generated in the homogeneity test and proved that this is the case (fig.15).

The second step is to calculate the number of replicate measurements per participant needed so that the assessment criteria are met and in this case we had calculated 20 (fig. 3) as the desirable number, which is too large to be a practical option. The third option is to include the between sample standard deviation to the assigned value standard deviation for each test item which is what we have done here.

#### Calculation of performance statistics

The consensus values from the participants were used to calculate the performance statistics for the test. These values take into account the heterogeneity of the samples from the homogeneity test, that is the between sample standard deviation, and the assigned values for the test materials used in this round were calculated using the robust algorithm A in annex C of ISO13528 which are derived by an iterative calculation using the new modified averages and standard deviations until the process converges (figs.10-13). This method takes care of outliers in the dataset and missing values.

The assigned values for each measurand were then used to calculate estimates of laboratory bias (fig.16), percentage differences (fig. 17), ranking (figs. 18-21) and finally Z-scores (figs.23-26). Laboratory bias assumes a normal distribution of the data across zero and any results outside the warning signal (2SD) or action signal (3SD) would suggest an out of specification result, results shown are rounded around the zero which suggests no bias. Percentage difference is another way of showing data similar to the estimates of laboratory bias plots by using percentages instead of Z-scores. Ranking used in figures 18-21 uses probability plots of percentage ranks, this type of plots do not involve assumptions above the normality of the data and simply identifies the laboratories/analysts that report the most extreme results for each measurand.

Z-scores are used to assign the results to each analyst. These Z-scores have been produced using the robust averages and standard deviations for each measurand through iteration and adding the standard deviation calculated from the heterogeneity of the samples. The results show that Z-scores are generally within the specification of the test for most analysts with a number of warning and action signals. A warning signal is a result between 2 and 3SD of zero and an action signal is a result outside 3SD. Two warning signals in consecutive intercomparisons give rise to an action signal. An action signal signifies that an investigation of the causes by the laboratory should be carried out.

There are only two action signals in one count (analysts 20 and 40) and five warning signals (analysts 38, 48, 5, 33, 15) in total in all the counts.

#### Combined performance scores

It is common in any rounds of a proficiency testing exercise to obtain results from several test items or measurands, in our case each species found in the samples is a test item or measurand. As this is generally

our case, the individual scores for each measurand is analysed individually but also can be used to calculate combined effects for a particular laboratory or analysts such as correlation between results for different measurands. Graphical methods for this include histograms, bar plots and repeatability standard deviations plots.

The Z-scores plotted in figures 23-26 can also be represented through histograms in figures 27-30. Histograms represent a quick way to see how many laboratories/analysts fail to satisfy the assessment criteria. Also, this frequency failure can help to assess whether the actual criteria is too relaxed or too tight.

Bar plots of standardized repeatability bias as in figure 31 is a good way to see all Z-scores of each participant plotted together, which can reveal common features for an analyst like tendencies to over or underestimate cell counts which could point out to methodological or counting issues. It is up to individual laboratories to investigate the causes which may cause anomalies.

The plot of repeatability standard deviations shown in figures 32-35 uses a modified approach to the circle technique of van Nuland. This plot uses the average and standard deviation of each laboratory/analyst and plots one against the other. Because of this modified approach, the critical region drawn doesn't have the shape of a circle anymore. This critical region corresponds to a significance level of 5% for the inner layer, 1% and 0.1% for the most outer layer. This plot determines which laboratories/analysts are having unusual averages and standard deviations.

There are two counts (*C.diadema*, *H.akashiwo*) where many averages appear to be outside the significance region and there could be several causes for this. It definitely points out to a difficulty counting these two species. In the case of *H.akashiwo*, belonging to the raphydophites, the cause could be found in the lugol's iodine preservation of the species as this group of organisms tends to lose the shape or even lyse upon preservation, so it is possible to suggest that some cells had not preserved well in the samples. *C.diadema* on the other hand is a chain forming organism and the culture used for the test was mostly made up of small chains of two-three cells per chain. A possibility here is that sometimes it is hard to ascertain whether a cell half-broken or that looks half-empty of contents should be counted or not. Definitely, a consideration on using more chain former species in future exercises to ascertain whether there is a tendency to count differently this type of species or whether there is an extra difficulty here.

These combined scores over several rounds of a proficiency test can also be combined in future exercises using other performance statistics and graphical representations like Shewhart or Cusum control charts that allow for trends and other features of the results over time.

#### Qualitative data

ISO13528 doesn't deal with qualitative results, but the correct identification of the organisms in the samples is still a very important part of the exercise, as correct or incorrect flags will be given as a result in each statement performance certificate. The composition of species changes from year to year and in 2013 we have spiked four species. The data received from the analysts shows that analysts are highly skilled in the identification of marine phytoplankton and the results show near perfect scores for all identifications. The most difficult species was *G.instriatum* perhaps because as a naked dinoflagellate the shape of this organism suffers as a consequence of preservation and the details needed for a good identification are not so obvious. Also, *C.diadema* was difficult to identify to species level, the culture of this chain forming diatom was probably not at its best and the chains found in the samples were quite short (2-3 cells) making it difficult for analysts to go to species level. No problems were found identifying the other two species with close to perfect scores.

Only four analysts in total failed to identify one of the species in the samples which indicates an overall high standard of correct identification. The flags for correct identifications are based on a correct genus answer rather than on species taxon, as this sometimes is nearly an impossible task using light microscopy alone. However, for the purpose of the intercomparison we ask analysts to go to species level which gives us a better insight on the analyst and laboratory approach to identification and while this is not used for final marks, the information is still valuable for discussion among the participants. It also gives the co-ordinator of the scheme invaluable data towards species selection in future exercises.

#### Online HAB quiz

The online HAB quiz has proven very successful and original problems with the software have been ironed out as much as possible. There are still a small number of issues, specifically with 'short answer' type questions where analysts must write the answer to the question exactly as it has been written into the programme by the coordinators. If the answer doesn't match exactly letter by letter, down to the punctuation, the question will be marked as incorrect. Also, it is quite difficult for the quiz manager to recorrect scores within the programme itself and modifications are easier after downloading the data in a different format like Excel for example. We must not forget that we are working with freeware and we have no control over the development of the software. Even, with these considerations in mind, the HAB quiz is otherwise a good addition to the exercise and this online facility helps greatly the administration and reporting of results.

The standard of the analysts in the HAB quiz over the years has been quite high which demonstrates that analysts have a very good theoretical grounding on marine phytoplankton taxonomy. This year, the results show that this trend continues with 60% of analysts in 100% grades and another 29% of analysts with over 90% grades, which corresponds to over 89% of the participants achieving a proficiency mark.

The quiz this year focused on a group of algae that normally doesn't get enough attention because of their size and therefore inconspicuity; the nanoflagellates, five questions of a total of 14 focused on marine nanoflagellates, one question on raphidophytes, seven questions focused on armoured dinoflagellates taxonomy, life cycle or ecology and one question on general diatoms/dinoflagellates identification.

#### 6. Recommendations from workshop 2013

- Form 2 needs to be updated to take into consideration that not all samples may be analysed in the same day, there is no provision for adding this information in the present format.
- Results and provisional Z-scores should be handed out before the workshop, so analysts have time to study them and be able to ask relevant questions about them at the workshop
- Accreditation to ISO 17043: Conformity assessment- General requirements for proficiency testing. One main goal of this intercomparison exercise is to become an accredited proficiency testing scheme. This carries over from 2012. There is quite a bit of work to be done in order to accredit the scheme but the first steps in relation to the use of standard methods for statistics, the formation of an expert group and the fulfilling of the technical requirements is in place.
- The workshop is to continue in its present format of 2-3 days but we may consider having a biannual workshop instead. Workshop attendance was good with representation from 17 laboratories and a total of 26 participants.

- Participants did not bring any samples from their areas to the workshop but it should be encouraged that any samples that may be of interest or that you may have difficulty with to bring along to analyse and discuss at the workshop.
- Also, to encourage other participants to present their work at the next workshop. This could be a small 10-20 mins presentation on a particular and relevant topic of interest.
- As statistical analysis becomes standardized through the use of ISO13528. There may not be any need to describe these statistics each year in the report and instead a summary report will be presented of the final results and any warning and action limits that may have arisen for particular analysts flagged.
- Discussion on improvements on how to prepare the samples including the possibility of using an automated system and compare results between manual and automatic homogenization.

## ANNEX 1: Form 1 return slip and checklist





## Bequalm Intercomparison PHY-ICN-13-MI1 FORM 1: RETURN SLIP AND CHECKLIST

| -                                                               | te the table below upon receip<br>ail immediately to the Marine 1<br>as@marine.ie |     |    |  |
|-----------------------------------------------------------------|-----------------------------------------------------------------------------------|-----|----|--|
| Analyst Name:                                                   |                                                                                   |     |    |  |
| Laboratory Name:                                                |                                                                                   |     |    |  |
| Analyst Code Assigned :                                         |                                                                                   |     |    |  |
| Contact Tel. No. / e-mail                                       |                                                                                   |     |    |  |
| CHECKLIST OF ITEMS RECEIVED (Please circle the relevant answer) |                                                                                   |     |    |  |
| Sample numbers <b>Homoger</b><br>ink)                           | neity test (black                                                                 | YES | NO |  |
| Sample numbers id. test<br>ink)                                 | -                                                                                 | YES | NO |  |
| Set of Instructions                                             |                                                                                   | YES | NO |  |
| Enumeration and identificat <b>+3)</b>                          | ion result log sheet <b>(Form 2</b>                                               | YES | NO |  |

I confirm that I have received the items, as detailed above.

(If any of the above items are missing, please contact Rafael.salas@marine.ie)

SIGNED: \_\_\_\_\_

DATE: \_\_\_\_\_

ANNEX 2: Form 2 Enumeration and identification results log sheet



## **Bequalm Intercomparison PHY-ICN-13-MI1** FORM 2: ENUMERATION AND IDENTIFICATION RESULTS LOGSHEET

| Analyst Name:    |  |
|------------------|--|
| Laboratory Code: |  |
| Analyst Code :   |  |

| Settlement date: | Analysis date: | Volume Cham | Volume Chamber (ml)= |            | Sample No:               |                   |                   |                   |         |
|------------------|----------------|-------------|----------------------|------------|--------------------------|-------------------|-------------------|-------------------|---------|
| Organism         |                | Cell count  | Cell<br>count        | Cell count | Multiplication<br>factor | Number<br>cells/L | Number<br>cells/L | Number<br>cells/L | Average |
|                  |                |             |                      |            |                          |                   |                   |                   | #DIV/0! |
|                  |                |             |                      |            |                          |                   |                   |                   | #DIV/0! |
|                  |                |             |                      |            |                          |                   |                   |                   | #DIV/0! |
|                  |                |             |                      |            |                          |                   |                   |                   | #DIV/0! |
|                  |                |             |                      |            |                          |                   |                   |                   | #DIV/0! |
| Comments:        |                |             |                      |            |                          |                   |                   |                   |         |

ANNEX III: Form 3: Homogeneity test results log sheet

| Bequalm 2013 Phytoplankton Intercomp     | oarison Exercise      |         |
|------------------------------------------|-----------------------|---------|
| Analyst Name:                            |                       |         |
| Laboratory Code:                         |                       |         |
| Analyst Code :                           |                       |         |
| Settlement date:                         | Sample No:            |         |
| Analysis date:                           | Cell count            |         |
| Volume Chamber (ml)=                     | Multiplication factor | Average |
|                                          | Number cells/L        | #DIV/0! |
| Form 3: Homogeneity<br>test<br>Comments: |                       |         |

### **ANNEX IV: Test instructions**





# Marine Institute-IOC- BEQUALM-NMBAQC Phytoplankton Proficiency Test PHY-ICN-13-MI1 Vr2.0

### Instructions

Please note that these instructions are designed strictly for use in this Intercomparison only.

- 1. Introduction
- 1. Preliminary checks, deadlines and use of forms
- 2. Test method
- 3. Equipment
- 4. Sedimentation chambers and sample preparation
- 5. Counting strategy
- 6. Samples
- 7. Conversion calculations of cell counts
- 8. Online HABs quiz
- 9. Points to remember

#### 2. Introduction

The Marine Institute, Galway, Ireland, has conducted a phytoplankton enumeration and identification ring trial, under the auspices of BEQUALM-NMBAQC annually since 2005. In 2011, the IOC Science and Communication Centre on Harmful Algae and the Marine Institute initiated collaboration on the design and organization of this exercise which continues under the Marine Institute- IOC -BEQUALM-NMBAQC banner.

Reports from previous exercises can be obtained in the NMBAQC website ( <u>www.nmbaqcs.org</u>) and information on all the Bequalm intercomparison schemes can be found in their website (<u>www.bequalm.org</u>). Registration to the exercise is through the Marine institute. You need to contact our administrator Maeve Gilmartin at <u>maeve.gilmartin@marine.ie</u>.

The purpose of this exercise is to compare the performance of laboratories engaged in national official/non-official phytoplankton monitoring programmes, water framework directive, marine strategy framework directive and other laboratories (environmental agencies, consultancies, private companies) working in the area of marine phytoplankton analysis.

The Marine Institute is accredited to the ISO 17025 standard for toxic marine phytoplankton identification and enumeration since 2005 and recognises that regular quality control assessments are crucial to ensure a high quality output of phytoplankton data.

This interlaboratory comparison exercise is conducted to determine the performance of individual laboratories on the composition and abundance of marine microalgae in preserved marine samples and to monitor the laboratories continuing performance.

This Phytoplankton Ring Test this year is set up to test the homogeneity and stability of the materials sent to the participants to investigate methodology issues. Also, to determine the variability within and between laboratories in the abundance and composition of marine phytoplankton species from a number of samples spiked with cultured material.

Participants are asked to carry out counts on a set of three samples and also to identify and count all the organisms present in a second set of samples. Each analyst will receive an

50

envelope containing seven samples: a set of three samples and a set of four samples in 30ml sterilin tubes preserved in lugol's iodine

Please adhere to the following instructions strictly. Please note that these instructions are specific to this ring test only.

#### 3. Preliminary checks, deadlines and use of forms

Upon receipt of the samples, every analyst must make sure that they have received everything listed in the Return Slip and checklist form (Form 1). Make sure that all the samples are intact and sealed properly and check that you have received the enumeration and identification results log sheet (Form 2) and homogeneity test (form 3) in the same Excel workbook. Please complete form 1: Return slip and checklist form and send it by fax (+353 91 387237) or scan it and send it via e-mail to <u>Rafael.salas@marine.ie</u> A receipt of fax/e-mail is necessary for the Marine Institute to validate the test process for each analyst.

Once samples have been receipt, analysts have four weeks to complete the exercise and return the results to Rafael Salas, Marine Institute, Phytoplankton laboratory, Rinville, Oranmore, Co. Galway, Ireland by e-mail (<u>Rafael.salas@marine.ie</u>). The enumeration and identification results log sheet (Form 2 + 3) **must be received** in the Marine Institute by **July 15<sup>th</sup>**, **2013**.

## Please note: Results received after this date will not be included in the final report. Also, if you are posting your results make sure to make a copy for your records before sending the originals.

This year we are using an Excel workbook named 'Enumeration and identification logsheet' for you to input your results. The worksheets Form 2 and Form 3 are included in this workbook. In both forms, first fill in your name, analyst and laboratory code at the top of both forms. In form 2: Logsheet you must enter the identification and enumeration results of sample set 2 (Read section 8. Samples) there is a table that you need to fill in with the name of the species identified and the cell count for each species and sample. In the green cells you write the sample number and under the cell named 'organism' a drop down menu will appear with a list of possible species names. You must choose from this list your answer. The list of species is a reduced list and is designed to have more entries than

species are in the samples, you must choose which ones you think have been spiked in the samples and provide a cell count.

If is not in the list, is not in the sample. The number of columns under the name 'organism' is ten but this is arbitrary. It doesn't mean you need to enter ten names or that there is ten species in the samples. The number of species in the samples is a fixed number but you must decide that yourselves.

Form 3: Homogeneity test is in the next tab, Here you must include the results of your sample Set 1 (read section 8. Samples). There is a simple table here. You must enter your sample number in the green cells, the settlement, analysis date and volume used.

Under cell count, write the number of cells found in the sample, the multiplication factor used and the final cell density in cells per litre. There is a formula already embedded under 'Average' to calculate the mean of your three measurements.

In the comments box in both forms you can write information about the test method you used if deviates from the Utermöhl test method and how you did your calculations if necessary.

## 4. Test method

The Utermöhl cell counting method (Utermöhl 1931, 1958) is the standard quantitative test method used in the Marine Institute phytoplankton national monitoring programme in Ireland. We use 25ml sedimentation chambers volume and we are accredited under the ISO 17025 quality standard.

We advise the use of 25ml sedimentation chambers for the purpose of this intercomparison exercise if these are available. If not, other sub-sample volumes and/or chambers may be used. If a different method is used, please state all this information in your results.

## 5. Equipment

The following are the equipment requirements to complete this exercise:

Sedimentation chambers (25ml volume if possible).

<u>Inverted Microscope</u>: This should be equipped with long distance working lenses up to 40 x objective or higher and condenser of Numerical Aperture (NA) of 0.3 or similar and capable for bright field microscopy.

Tally counters

## 6. Sedimentation chambers and sample preparation

Sedimentation chambers consist of a clear plastic cylinder, a metal plate, a glass disposable cover-slip base plate and a glass cover plate (Fig 1). Three sedimentation chambers are required.



Fig 1: Sedimentation counting chamber

- 5.1 All sedimentation chambers should be cleaned before start
- 5.2 Place a new not used disposable cover slip base plate inside a cleaned metal plate.
- 5.3 Screw the plastic cylinder into the metal plate. Extra care should be taken when setting up chambers. Disposable cover slip base plates are fragile and break easily causing cuts and grazes.

- 5.4 **Important:** Once the chamber is set up, it should be tested for the possibility of leaks by filling the completed chamber with sterile seawater and allowing it to rest for a few minutes. If no leakage occurs, pour out the water, dry out completely and proceed with the next step.
- 5.5 To set up a sample for analysis or sub-sample. Firmly invert the sample 100 times to ensure that the contents are homogenised properly.
  - 5.5.1 Pour the sample into the counting chamber. (samples must be adapted to room temperature before hand to reduce the risk of air bubbles in the chambers)
  - 5.5.2 There should be enough sample volume in each sample to fill a 25ml sedimentation chamber. Top up the sedimentation chamber and cover with a glass cover plate to complete the vacuum and avoid air pockets.
  - 5.5.3 Label the sedimentation chamber with the sample number from the sterilin tube.
- 5.6 Use a horizontal surface to place chambers protected from vibration and strong sunlight.
- 5.6 Allow the sample to settle for a minimum of twelve hours.
- 5.7 Set the chamber on the inverted microscope and analyse.
- 5.8 Enumeration and identification results for each sample are to be entered in Excel workbook Form 2 enumeration and identification results log sheet and Form 3 Homogeneity and stability test.
- 5.9 If using a different method to the Utermöhl test method, please send the Standard Operating Procedure for your method with your results. Explain briefly

how it works and how samples are homogenized, set up, analysed, counted and how you calculate the final concentration.

## 7. <u>Counting strategy</u>

Each analyst should carry out a whole chamber cell count (WC) of all the species identified in the samples where possible. Other counting strategies can also be used where the cell density in the sample is high. Show your calculations if using a field of view or transect count.

## 8. Samples

Analysts will have to analyse 6 samples to complete the test. This comprises two set of samples. The sample sets have been prepared in separate envelopes.

Set 1 is composed of three samples. The numbers are written in black ink. These are made up in sterile filtered Seawater. One organism has been added to the samples to the required cell density. Participants are asked to carry out a whole chamber count on each of the three samples. This data will be use to test the homogeneity and stability of the samples. <u>No</u> identification of the organism is needed.

Set 2 consist of four samples but only three need to be analysed, one is just a spare sample. These have been made up with sterile filtered seawater as in the previous set but this time a number of cultured species have been added. The cultures come from the Marine Institute Phytoplankton culture collection, and the IOC Science and communication centre for Harmful Algae culture collection in Denmark. All the materials have been preserved using lugol's iodine and then homogenized following the IOC Manual on Harmful Marine Algae technique of 100 times sample inversion to extract sub-samples.

Each analyst must **count and identify all phytoplankton species** found in three of the samples.

It is very important to spend some time becoming familiar with the samples and how the cells appear on the base plate before any count is done as part of the test. The reason for

this is that cultured cells could be undergoing division or fusion and look different to the known standard vegetative cell type. See figure 1.



Figure 1: Two Cells fusing

Also note that cells' emptied thecae of dinoflagellates may appear in the samples (see figure 2), or silica frustules in diatoms.



Figure 2: Empty theca

Cells may also vary in size, some cells will appear smaller than others, this is normal in culture conditions (see figure 3). Sometimes Plasmolysis may occur and the cells appear naked and rounded (see figure 4). Aberration of cell morphology can occur also in culture conditions and upon preservation of samples with lugol's iodine.



Figure 3: Big versus small cells

Figure 4: Plasmolised cell

When counting cell chains, only count fully intact and divided cells, counting half cells should be avoided (fig.5).



Figure 5

Figure 6

Sometimes cells may not be in the same focus plane (fig.6) but you still need to count them.

The following rules should be applied for cell counting and identifying in this exercise:

a) Any cells that are dividing or fusing, no matter how advance the stage of division or fusion is should be counted as one cell.

b) Empty theca/ silica frustules should not be counted.

c) Cells should be counted regardless of size, different sizes doesn't necessarily mean different species

d) Plasmolised cells should not be counted

e) Aberrant forms should be counted

f) When counting cell chains, do not count half or broken cells which are part of the chain

g) Identify to the highest taxonomic level possible all species in the samples

h) Participants should name phytoplankton species according to the current literature and scientific name for that species. Where species have been named using a synonym to the current name and if this synonym is still valid or recognized the answer will be accepted as correct.

These rules are only applicable to this intercomparison exercise.

## 9. <u>Conversion calculations of cell counts</u>

The number of cells found should be converted to cells per litre.

Please show the calculation step in Form 2 + 3: enumeration and identification results log sheet.

## 10.<u>Online HABs quiz</u>

A HAB taxonomic quiz will be developed in the web platform 'Ocean teacher' and it should be ready by July 2013. All participants will need access to the internet to complete this part of the exercise. More information on when participants will be able to access this exercise will be sent to you by e-mail later on.

In order to access the exercise you need to go to the webpage http://classroom.oceanteacher.org/ and login. Analysts which took part in the exercise in 2011 or 2012 will already have a username and password which is still active, those using this facility for the first time need to register first.

When you go to the page <u>http://classroom.oceanteacher.org/</u> in the top right hand corner of this page, you'll see a link to login. Press login and in the next page if you already have registered in 2011 or 2012, enter your username and password to access the course, if you forgot your password press the forgotten password link. If this is your first time using this system, then go to create new account and register your details. Once you register your details we will be able to activate your account. This year as in 2012 participants will be able to self-enrol for this exercise, so once you are registered and logged in you must supply an enrolment key to access the exercise. This key is **Beq2013**. We will tell you the exact date the exercise is opened.

So, how do you do access the course?, Once you are all logged in, in the main page scroll down to the bottom and under interdisciplinary courses, click courses, on the next page and under categories click Harmful Algal Bloom (HAB). The Harmful algal bloom programme Bequalm 2013 link will appear, click on it, enter your key (**Beq2013**) and start your quiz. Make sure you enter the right course.

Analysts will have 4 weeks to complete the exercise once it opens (dates to be decided). Only one attempt to the exercise is allowed and once the exercise is submitted analysts won't have access to it, only to review. So, make sure you review all your answers before submitting.

There are a number questions and a maximum grade of 100% for a perfect score. All questions have the same score.

There are different types of questions (true/false, numerical, matching, multiple choice short answer). Please note that if you are asked for a number as the answer do not use text, use a numerical value. Also, in questions where you are asked to write the answer, please make sure that the grammar is correct. Incorrect grammar will give an incorrect answer. Please review your work carefully before submitting.

## 11. Points to remember

- 1. All results must be the analysts own work. Conferring with other analysts is not allowed.
- The Excel worksheets Form 2: Enumeration and identification results log sheet and Form 3: Homogeneity test results, must be received by the Marine Institute, Phytoplankton unit by July 15th, 2013.

## ANNEX V: Workshop agenda



### Agenda Bequalm Phytoplankton Intercomparison workshop

#### Marine Institute, Rinville, Oranmore, County Galway, Ireland 7-9 Oct 2013.

#### Monday 7 – Wednesday 9 Oct 2013

|                    | Morning 9.30am-13.00pm                                                                                                                  | Afternoon 14.00pm-17.30pm                                                          |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Monday, 7 Oct      | Intercomparison exercise results<br>Enumeration and identification                                                                      | Community analyses of North Sea<br>phytoplankton (R.Van Wezel)                     |
|                    | exercise results. Ocean teacher<br>online HABs quiz exercise results.                                                                   |                                                                                    |
|                    |                                                                                                                                         | Calculating Phytoplankton                                                          |
|                    | (R.Salas)                                                                                                                               | Biovolume, Biomass and Carbon –<br>How and Why! (Lars Edler)                       |
|                    | ISO13528 statistical methods<br>(R.Salas)                                                                                               | Field samples from participants                                                    |
|                    | (                                                                                                                                       | (microscopy and identification) All                                                |
|                    | Discussion of exercise and ideas for 2014 (All)                                                                                         |                                                                                    |
| Tuesday, 4 Dec     | Lecture and microscope<br>demonstration of the Raphidophytes<br>group (J.Larsen)                                                        | Lecture and microscope<br>demonstration of the nanoflagellates<br>group (J.Larsen) |
| Wednesday 9<br>Oct | Lecture and microscope<br>demonstration of naked<br>dinoflagellates with emphasis on<br>Gyrodinium and Gymnodinium<br>genera (J.Larsen) | Departure                                                                          |

Coffee/Tea times 11:00am and 15:30pm

Lunch 13:00-14:00 pm

## ANNEX VI: Participating Laboratories

| Number of    | Company Name                                                             | Address                                                                                                        |
|--------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Laboratories |                                                                          |                                                                                                                |
| 1            | Isle of Man Government Laboratory                                        | Dept of Environment, Food and Agriculture Ballakermeen Road, Douglas, Isle of Man, IM1 4BR                     |
| 2            | Scottish Marine Institute                                                | SAMS Research Services Ltd, Oban, Argyll, PA37 1QA, Scotland                                                   |
| 3            | IMARES                                                                   | Korringaweg 5 4401 NT Yerseke The Netherlands                                                                  |
| 4            | Nostoca Algae Laboratory                                                 | 7770 Springridge Road N.E., Bainbridge Island Washington 98110 USA                                             |
| 5            | Cefas Laboratory                                                         | Pakefield Road Lowestoft Suffolk NR33 0HT                                                                      |
| 6            | Institute of Oceanography and Fisheries                                  | Laboratory of Plankton and Shellfish toxicity, Šetalište I. Meštrovića 63, 21000 Split, Croatia                |
| 7            | Marine Scotland Marine Laboratory                                        | Inshore Ecosystems, 375 Victoria Road, Aberdeen, AB11 9DB, UK.                                                 |
| 8            | Laboratorio de Control de calidad de los recursos pesqueros              | Agencia de gestion agraria y pesquera de Andalucia                                                             |
| 9            | Laboratorio de Medio Ambiente de Galicia (LMAG)                          | Iglesia 19 36153 Lourizán (Pontevedra) Spain                                                                   |
| 10           | DHI Laboratory                                                           | 200, Pandan Loop #08-02 Pantech21 Singnapore 128388                                                            |
| 11           | Jacobs UK Limited                                                        | Kenneth Dibben House, Enterprise Road, Southhampton Science Park SO16 7NS UK                                   |
| 12           | Stazione Zoologica Anton Dohrn Villa Comunale                            | 80121 - Napoli Italy                                                                                           |
| 13           | IVL Swedish Environmental Institute                                      | Rosviksgatan 12 SE-45330 Lysekil Sweden                                                                        |
| 14           | Australian Shellfish Quality Assurance Program (SASQAP)                  | Port Lincoln, South Australia, Australia                                                                       |
| 15           | Biopol Sjávarlíftæknisetur / Marine Biotechnology                        | Einbúastíg 2 545 Skagaströnd Iceland                                                                           |
| 16           | LIENSs, CNRS, University of La Rochelle                                  | Bâtiment ILE, 2 rue Olympe de Gouges, 17000 La Rochelle, FRANCE                                                |
| 17           | Eidikos Logariasmos Kondilion Erevnas                                    | Ktirio KE.D.E.A- 3 Septemvriou - Panepistimioupoli P.C : GR 54636 Thessaloniki Greece                          |
| 18           | Phytoplankton Monitoring Program National Direction of Aquatic Resources | Constituyente 1497 11200 Montevideo, Uruguay                                                                   |
| 19           | IFREMER Station de biologie marine                                       | Place de la Croix BP 40537 29185 Concarneau Cedex France                                                       |
| 20           | Fisheries and Aquatic Ecosystems Branch                                  | Agri-Food & Biosciences Institute Newforge Lane Belfast BT9 5PX                                                |
| 21           | Koeman en Bijkerk bv                                                     | Oosterweg 127, 9751PE HAREN 9750AC HAREN The Netherlands                                                       |
| 22           | Plymouth Marine Laboratory                                               | Prospect Place The Hoe Plymouth PL1 3DH UK                                                                     |
| 23           | Corben Ltd                                                               | Loch Melfort , Arduaine, Argyll Scotland PA34 4XQ                                                              |
| 24           | Laboratoire des sciences de l'environment Marin (LEMAR)                  | Institut Universitaire Européen de la Mer Technopôle Brest-Iroise rue Dumont d'Urville 29280 Plouzané - France |
| 25           | Université Bordeaux                                                      | 1 UMR CNRS EPOC 5805 Station Marine d'Arcachon 2 rue du Prof. Jolyet F 33120 Arcachon France                   |
| 26           | IRTA E-43540 Sant Carles de la Ràpita (Tarragona) Spain                  | Ctra. de Poble Nou, Km 5,5                                                                                     |
| 27           | CNRS-UPMC - Service Mer et Observation                                   | FR2424 Place Georges Teissier CS90074 29688 ROSCOFF FRANCE                                                     |
| 28           | CLS                                                                      | c/o Marine Institute, Rinville Galway                                                                          |
| 29           | Microalgal Services                                                      | 308 Tucker Road Ormond VIC 3204 Australia                                                                      |
| 30           | Marine Institute Galway                                                  | Rinville, Oranmore, County Galway, Ireland                                                                     |
|              | Marine Institute Bantry                                                  | Gearhies pier, Bantry, County Cork, Ireland                                                                    |
|              | SEPA                                                                     | Clearwater House, Heriot-Watt Research Park, Edinburgh, EH14 4AP                                               |
|              | Laboratoire d'Océanologie et de Géosciences                              | UMR CNRS 8187 LOG 32 av. Foch 62930 Wimereux France                                                            |
|              | APEM Limited                                                             | Riverview, Embankment Business Park, Heaton Mersey, Stockport, SK4 3GN                                         |

|                                                                                                                                                                                                                                                                                                          |                                                             | as na Mara                                                                                                               | :<br>Educationa<br>Cultur | United Nations<br>I, Scientific end<br>al Organization | Intergovernmental<br>Oceanographic<br>Commission |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------------------------------------|--------------------------------------------------|
|                                                                                                                                                                                                                                                                                                          | onal Marine Biolo<br>STATEN                                 | ity Assurance in Mo<br>gical Analytical Qu<br>Marine Institute<br>IENT OF PERFOR<br>Component of Com<br>Year 2013        | ality C<br>XMANO          | ontrol Schem<br>CE                                     |                                                  |
| Participant details:<br>Name of organisation<br>Country:<br>Participant:<br>Year of joining:<br>Years of participatio                                                                                                                                                                                    |                                                             | 1 ear 2013                                                                                                               |                           |                                                        |                                                  |
| Statement Issued:<br>Statement Number:                                                                                                                                                                                                                                                                   | MI-BQM-13-                                                  |                                                                                                                          |                           |                                                        |                                                  |
| Summary of results:<br>Component Name                                                                                                                                                                                                                                                                    | Subcontracted                                               | Results                                                                                                                  |                           | identification                                         |                                                  |
| Phytoplankton abundance and<br>composition PHY-ICN-13-MI1                                                                                                                                                                                                                                                | Marine Institute                                            | Z-score (+/- 2 Signa lim<br>Coscinodiscus granii<br>Chaetoceros diadema<br>Heterosigma akashiwo<br>Gyrodinium instriatum | its)                      |                                                        |                                                  |
|                                                                                                                                                                                                                                                                                                          | Overall Result Taxonomic quiz                               | (Pass Mark 70%, over 90% profi                                                                                           | cient)                    |                                                        |                                                  |
| Phytoplankton Taxonomy quiz<br>PHY-ICN-13-MI1                                                                                                                                                                                                                                                            | IOC Science and<br>communication Centre on<br>Harmful algae |                                                                                                                          |                           |                                                        |                                                  |
| n/a: component not applicable to the participant; n/p: Participant not participating in this component;<br>n/r: no data received from participant<br>The list shows the results for all components in which the laboratory participated. See over for details.<br><b>Notes:</b><br>Details certified by: |                                                             |                                                                                                                          |                           |                                                        |                                                  |
| Joe Silke<br>Section manager                                                                                                                                                                                                                                                                             | Rafael Gallardo Sa<br>Scientific Technica                   | las                                                                                                                      |                           |                                                        |                                                  |
|                                                                                                                                                                                                                                                                                                          |                                                             |                                                                                                                          |                           |                                                        |                                                  |

## ANNEX VII: Statement of Performance

### Description of Scheme components and associated performance standards

In the table overleaf, for those components on which a standard has been set, 'Proficient', 'Good', and ' "Pass" flags indicate that the participants results met or exceeded the standards set by the Bequalm Phytoplankton scheme; 'Participated' flag indicates that the candidate participated in the exercise but did not reach these standards. The Scheme standards are under continuous review.

| Component                                           | Annual<br>exercises | Purpose                                                                                                                                                                                                                             | Description                                                                                                                                                                                                | Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------------------------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Phytoplankton<br>Enumeration<br>Exercise            | 1                   | To assess the performance of<br>participants using the Utermöhl<br>cell counting technique on the<br>analysis of prepared sample/s of<br>Seawater preserved in Lugol's<br>iodine spiked using biological or<br>synthetic materials. | Prepared marine water sample/s<br>distributed to participants for<br>abundance and composition of marine<br>phytoplankton species                                                                          | Participants are required to enumerate the test/s material/s and<br>give a result to within ±2SD or sigma limits of the robust average/s.<br>The robust average/s is/are the mean calculated from the consensus<br>values by the participants following the assessment criteria as set<br>out in ISO13528 , Annex c robust analysis: Algorithm A.<br>Participants are also required to identify the organisms found in the<br>samples correctly to the required taxon. Flags will be given as<br>correct, incorrect or not identified |
| Phytoplankton<br>Oceanteacher<br>online HAB<br>quiz | 1                   | To assess the accuracy of<br>identification of a wide range of<br>Marine phytoplankton organisms.                                                                                                                                   | This is a proficiency test in the<br>identification of marine phytoplankton<br>The exercise tests the participant's<br>ability to identify organisms from<br>photographs and/or illustrations<br>supplied. | The pass mark for the identification exercise is 70%. Results above<br>90% are deemed proficient, results above 80% are deemed good,<br>results above 70% are deemed acceptable, results below 70% are<br>reported as "Participated".<br>There are no standards for phytoplankton identification. These<br>exercises are unique and made from scratch.                                                                                                                                                                                |

#### ANNEX VIII: Ocean Teacher HAB Quiz

Nanoflagellates (<20 µm) are common in the marine environment and most species can be identified only in live material; in some cases electron microscopy is required for species Question 1 id. However, many nanoflagellates can be assigned to order or class by Light Microscopy. Below are shown schematic line-drawings of the most important groups of marine Correct flagellates - assign them to groups. Please note : Figures are shuffled randomly by the programme and do not follow a particular order (Figs A to J). If you can't see all the Mark 1.0 out of 1.0 drawings in this plate, change browser zoom level from 100% to 75-80% P Fig. B Dinoflagellates Fig. D Chrysophytes V Fig. E Raphidophytes V Fig. A Cryptophytes V . Fig. G Prasinophytes Fig. I Choanoflagellates Fig. C Haptophytes ~ Fig. F Euglenophytes V Fig. J Kinetoplastids × . Fig. H Chlorophytes ~~~

The correct answer is: Fig. B – Dinoflagellates, Fig. D – Chrysophytes, Fig. E – Raphidophytes, Fig. A – Cryptophytes, Fig. G – Prasinophytes, Fig. I – Choanoflagellates, Fig. C – Haptophytes, Fig. F – Euglenophytes, Fig. J – Kinetoplastids, Fig. H – Chlorophytes

| Question 2 | Nanoflagellates (<20 µm) are common in the marine environment. In the question 'Marine flagellates 1', you have identified the most important groups of flagellates. Which of the |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Correct    | following groups comprise toxic members in the marine environment?                                                                                                                |

P

Mark 1.0 out of 1.0 Chrysophytes, cryptophytes, chlorophytes, euglenophytes, haptophytes, prasinophytes, raphidophytes, unarmoured dinoflagellates

| Select one or more:                                                           |
|-------------------------------------------------------------------------------|
| 🗹 a. Haptophytes 🧹                                                            |
| b. Cryptophytes                                                               |
| C. Chlorophytes                                                               |
| d. Euglenophytes                                                              |
| e. Chrysophytes                                                               |
| ✓ f. Unarmoured dinoflagellates                                               |
| 🗹 g. Raphidophytes 🗸                                                          |
| h. Prasinophytes                                                              |
|                                                                               |
| The correct answer is: Haptophytes, Raphidophytes, Unarmoured dinoflagellates |

Question 3 Correct The illustrated flagellate belongs to the Prasinophytes and is one of the smallest eukaryotic organisms known. It is a common and presumably important primary producer in marine environments, but overlooked and rarely identified because of its small size. What is the name of this flagellate?. Identify to genus level. Capitalize the first letter of the generic name

Mark 1.0 out of 1.0

P



Answer: Micromonas

The correct answer is: Micromonas

 Question 4
 The illustrations show different species of a green flagellate belonging to the class Prasinophyceae. The illustrated species also belong to the same genus. What is the name of this genus? Capitalize first letter of genus name.

Mark 1.0 out of 1.0 Figs A & D scale bar= 5µm.

P

ngo A dio scale bal- opin.



Answer: Nephroselmis

The correct answer is: Nephroselmis

Question 5 Correct Mark 1.0 out of 1.0



Identify the illustrated organism to species level if possible, if not, identification to genus level is sufficient and will be given

as correct. Please note: the first letter of the generic name should be capitalized.

Answer: Pyramimonas

Pyramimonas or Pyramimonas orientalis are both correct answers The correct answer is: Pyramimonas

#### Question **6** Correct

P

The illustrations show 5 different species of Raphidophytes. Identify the species. Please note : Figure numbers are shuffled randomly by the programme and do not follow a particular order. If you can't see all images in this plate, change browser zoom level from 100% to 75-80% or less.

Mark 1.0 out of 1.0 Cells approximately to scale





Species 3 Fibrocapsa japonica v v Species 4 Olisthodiscus luteus v v Species 5 Chattonella subsalsa v v Species 1 Chattonella antiqua v v Species 2 Heterosigma akashiwo v v

The correct answer is: Species 3 – Fibrocapsa japonica, Species 4 – Olisthodiscus luteus, Species 5 – Chattonella subsalsa, Species 1 – Chattonella antiqua, Species 2 – Heterosigma akashiwo



#### 🕱 smile

The correct answer is: The plates marked 1<sup>IIII</sup>-2<sup>IIII</sup> indicate – The antapical plates, The plates marked 1<sup>III</sup>-5<sup>III</sup> indicate – The postcingular plates, The plates marked 1a-3a indicate – The anterior intercalary plates, The plates marked 1<sup>III</sup>-4<sup>III</sup> indicate – The apical plates, The plates marked 1<sup>III</sup>-7<sup>III</sup> indicate – The precingular plates







| Question 11<br>Correct<br>Mark 1.0 out of 1.0<br>♥ | <image/>                                                                                                                                                                              |
|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                    | The correct answer is: Diplopelta                                                                                                                                                     |
| Question 12<br>Correct<br>Mark 1.0 out of 1.0      | The illustrations show a species of dinoftagellate belonging to the Diplopsalls-group. Identify the genus. Please note: case sensitive answer. Capitalize first letter of genus name. |
|                                                    | Answer: Diptopsalopsis                                                                                                                                                                |
|                                                    | The correct answer is: Diplopsalopsis                                                                                                                                                 |

Question 13 Correct Identify the following marine phytoplankton species to genus level. Please note : Figures are shuffled randomly by the programme and do not follow a particular order (A to F). Please note: There are more species in the drop down list than images, some don't apply.

Mark 1.0 out of 1.0

Image F: Prorocentrum Image B: Licmophora

v .

P



The correct answer is: Image C: - Striatella, Image A: - Protoperidinium, Image D: - Pseudo-nitzschia, Image E: - Guinardia, Image F: - Prorocentrum, Image B: - Licmophora



| ANALYST<br>CODE | S   | AMPLE CODI | ES  | C.granii Z-<br>score | C.diadema<br>Z-score | H.akashiwo<br>Z-score | G.instriatum Z-<br>score |  |
|-----------------|-----|------------|-----|----------------------|----------------------|-----------------------|--------------------------|--|
| 3               | 53  | 183        | 101 | 0.79                 | -0.40                | 0.47                  | 0.38                     |  |
| 23              | 16  | 37         | 171 | -0.01                | 0.52                 | 0.02                  | 0.29                     |  |
| 16              | 7   | 31         | 236 | -0.37                | 0.88                 | 0.24                  | 0.82                     |  |
| 40              | 19  | 28         | 216 | 0.24                 | not id               | -0.76                 | -3.79                    |  |
| 5               | 123 | 151        | 237 | 0.12                 | -1.04                | not id                | -2.40                    |  |
| 44              | 10  | 34         | 69  | 0.01                 | -0.67                | -0.81                 | 0.11                     |  |
| 30              | 96  | 131        | 150 | 0.47                 | 0.16                 | -0.07                 | -0.37                    |  |
| 18              | 115 | 119        | 61  | 0.22                 | -0.71                | -0.78                 | 0.20                     |  |
| 2               | 36  | 148        | 44  | 0.32                 | 0.66                 | -0.10                 | 1.42                     |  |
| 13              | 52  | 130        | 155 | -0.48                | -0.26                | -0.55                 | -1.02                    |  |
| 10              | 110 | 124        | 135 | 0.06                 | 0.72                 | 0.23                  | 0.50                     |  |
| 28              | 77  | 124        | 147 | -0.01                | -0.26                | 0.97                  | 0.04                     |  |
| 36              | 64  | 103        | 142 | -0.55                | -0.58                | 0.77                  | 0.06                     |  |
| 11              | 75  | 94         | 156 | -0.03                | -0.26                | 0.40                  | -0.03                    |  |
| 31              | 191 | 185        | 218 | -0.59                | 0.49                 | 0.56                  | -0.21                    |  |
| 38              | 51  | 87         | 186 | -0.13                | 2.63                 | -0.09                 | -0.03                    |  |
| 24              | 5   | 43         | 73  | 0.12                 | not id               | -1.23                 | -1.54                    |  |
| 25              | 184 | 210        | 195 | -0.66                | 0.65                 | -0.54                 | -0.10                    |  |
| 34              | 81  | 62         | 175 | 0.04                 | 0.91                 | 0.25                  | 0.71                     |  |
| 20              | 161 | 32         | 58  | -1.98                | -1.44                | -1.55                 | -5.80                    |  |
| 41              | 98  | 180        | 194 | -0.27                | -1.01                | -1.33                 | -1.92                    |  |
| 1               | 27  | 192        | 213 | 0.07                 | 0.56                 | 0.24                  | 0.27                     |  |
| 45              | 35  | 188        | 204 | 0.00                 | 0.38                 | 0.30                  | -0.06                    |  |
| 29              | 42  | 144        | 221 | 0.15                 | 0.39                 | -0.16                 | 0.43                     |  |
| 22              | 49  | 223        | 70  | 0.21                 | 1.36                 | -0.07                 | 0.68                     |  |
| 39              | 6   | 21         | 238 | -0.17                | 0.10                 | 0.25                  | 0.38                     |  |
| 37              | 83  | 157        | 176 | -0.09                | 0.26                 | 0.36                  | -0.15                    |  |
| 12              | 63  | 45         | 25  | 0.52                 | 1.43                 | 0.14                  | -0.31                    |  |
| 43              | 17  | 117        | 120 | 0.13                 | 0.29                 | 0.20                  | 0.35                     |  |
| 9               | 4   | 197        | 205 | -0.68                | 0.90                 | -0.27                 | -0.31                    |  |
| 7               | 68  | 97         | 207 | 0.35                 | -0.10                | -0.55                 | 0.37                     |  |
| 14              | 187 | 76         | 169 | -0.55                | -0.13                | 0.10                  |                          |  |
| 35              | 54  | 165        | 167 | 0.15                 |                      |                       | 0.04                     |  |
| 8               | 30  | 72         | 136 | 0.32                 |                      | -0.28                 |                          |  |
| 15              | 203 | 172        | 57  | 0.08                 |                      | 2.61                  | 0.19                     |  |
| 4               | 93  | 126        | 143 | 0.27                 |                      | 0.45                  | 0.28                     |  |
| 17              | 109 | 134        | 233 | 0.27                 |                      | 1.40                  |                          |  |
| 6               | 149 | 219        | 179 | 0.22                 |                      | 1.05                  | 0.01                     |  |
| 42              | 38  | 82         | 215 | 0.66                 |                      |                       | 0.24                     |  |
| 27              | 88  | 209        | 225 | -0.19                |                      | 0.62                  | -0.58                    |  |
| 33              | 8   | 41         | 92  | 0.33                 |                      |                       | 0.83                     |  |
| 19              | 199 | 173        | 231 | -0.22                |                      |                       | 0.55                     |  |
| 48              | 174 | 67         | 164 | -0.83                |                      |                       |                          |  |
| 49              | 59  | 105        | 190 | -0.51                |                      | -0.68                 |                          |  |
| 50              | 114 | 200        | 230 | -0.37                |                      | -1.50                 | -0.15                    |  |
| 46              | 78  | 178        | 182 | -0.27                |                      |                       |                          |  |
| 47              | 12  | 137        | 229 | 0.90                 |                      | -0.11                 | -0.10                    |  |

## ANNEX IX: Z-scores

| CODE         Q. 1         Q. 2         Q. 3         Q. 4         Q. 5         Q. 6         Q. 7         Q. 8         Q. 9         Q. 10         Q. 11         Q. 12         Q. 13         Q. 14         Grade           40         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000 <t< th=""><th>ANALYST</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<> | ANALYST |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 40         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         10                                                                                                                     |         | Q. 1  | Q. 2  | Q. 3  | Q. 4  | Q. 5  | Q. 6  | Q. 7  | Q. 8  | Q. 9  | Q. 10 | Q. 11 | Q. 12 | Q. 13 | Q. 14 | Grade |
| 13         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         10                                                                                                                     |         | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
| 25         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         10                                                                                                                     |         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 45         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         10                                                                                                                     | -       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 49         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         10                                                                                                                     | -       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 30         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         10                                                                                                                     |         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 43         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         10                                                                                                                     |         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 17       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       10                                                                                                                                                                                                     |         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 34         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         10                                                                                                                     |         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 8         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100                                                                                                                     |         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 15         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         10                                                                                                                     |         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 27         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         10                                                                                                                     |         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 46         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1                                                                                                                                                         |         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 38         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1                                                                                                                                                         |         |       |       |       |       |       |       |       |       |       |       |       |       |       | -     |       |
| 44         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         10                                                                                                                     |         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 42         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         10                                                                                                                     |         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 50         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         10                                                                                                                     |         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 12         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         10                                                                                                                     |         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 33         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         10                                                                                                                     |         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 23         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         10                                                                                                                     |         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 4         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100                                                                                                                     |         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 19         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         10                                                                                                                     |         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 1         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100                                                                                                                     |         |       |       |       |       |       |       |       |       |       |       |       |       |       |       | 100.0 |
| 48100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19      |       |       |       |       |       |       |       |       |       |       |       |       |       |       | 100.0 |
| 31         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         10                                                                                                                     | 1       |       |       |       |       |       |       |       |       |       |       |       |       |       |       | 100.0 |
| 16         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         10                                                                                                                     |         |       |       |       |       |       |       |       |       |       |       |       |       |       |       | 100.0 |
| 35         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         10                                                                                                                     | 31      | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
| 18         100.0         100.0         100.0         80.3         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100                                                                                                                     | 16      | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
| 41       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       10                                                                                                                                                                                                     |         |       |       |       |       |       |       | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
| 11       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       10                                                                                                                                                                                                     | 18      | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 80.3  | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 98.6  |
| 47       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       10                                                                                                                                                                                                     | 41      | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 67.6  | 100.0 | 97.7  |
| 20         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         10                                                                                                                     | 11      | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 0.0   | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 92.9  |
| 9100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 24         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         100.0         10                                                                                                                     |         |       |       |       |       |       |       |       |       | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 92.9  |
| 6       100.0       100.0       0.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0                                                                                                                                                                                                     |         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 36       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       10                                                                                                                                                                                                     | 24      | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 0.0   | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 92.9  |
| 29       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       10                                                                                                                                                                                                     | 6       | 100.0 | 100.0 | 0.0   | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 92.9  |
| 28       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       10                                                                                                                                                                                                     |         |       |       |       |       |       |       |       |       |       |       |       | 100.0 | 100.0 | 100.0 | 92.9  |
| 10       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       10                                                                                                                                                                                                     | 29      | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |       |       |       |       |       |       |       | 92.9  |
| 39       100.0       100.0       0.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.                                                                                                                                                                                                     | 28      | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 0.0   | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 92.9  |
| 2       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100                                                                                                                                                                                                     | 10      | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 0.0   | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 92.9  |
| 3       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100                                                                                                                                                                                                     | 39      | 100.0 | 100.0 | 0.0   | 100.0 | 100.0 | 100.0 | 100.0 | 0.0   | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 85.7  |
| 37       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       10                                                                                                                                                                                                     | 2       | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 0.0   | 0.0   | 100.0 | 100.0 | 100.0 | 85.7  |
| 5       100.0       100.0       100.0       0.0       60.6       100.0       0.0       100.0       100.0       100.0       100.0       82.9         14       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0       100.0                                                                                                                                                                                                                      | 3       | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 0.0   | 100.0 | 100.0 | 0.0   | 100.0 | 100.0 | 100.0 | 85.7  |
| 14         100.0         100.0         100.0         100.0         100.0         100.0         100.0         0.0         0.0         0.0         100.0         100.0         71.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 37      | 100.0 | 100.0 | 0.0   | 100.0 | 100.0 | 100.0 | 100.0 | 0.0   | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 85.7  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5       | 100.0 | 100.0 | 100.0 | 100.0 | 0.0   | 60.6  | 100.0 | 0.0   | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 82.9  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14      | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 0.0   | 100.0 | 0.0   | 0.0   | 0.0   | 100.0 | 100.0 | 71.4  |
| 100.0 100.0 93.3 97.8 97.8 98.7 100.0 73.3 100.0 95.6 91.1 97.8 99.3 100.0 96.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | 100.0 | 100.0 | 93.3  | 97.8  | 97.8  | 98.7  | 100.0 | 73.3  | 100.0 | 95.6  | 91.1  | 97.8  | 99.3  | 100.0 | 96.0  |

ANNEX X: HABs Oceanteacher quiz results